将TiO2加入NH2-MIL-101(Fe)前驱体中,采用溶剂热法制备TiO2/NH2-MIL-101(Fe),进一步经高温热处理得到TiO2/C、N掺杂Fe2O3复合材料(TiO2/C、N-Fe2O3)。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、光电子能谱(XPS)、紫外-可见分光漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对所得样品的晶体结构、形貌特征、组成及光谱特性进行表征。在模拟太阳光照射下对罗丹明B(RhB)溶液进行降解,评价其光催化活性。结果表明,C、N均匀掺杂在Fe2O3中,TiO2复合C、N掺杂Fe2O3后禁带宽度减小,模拟太阳光照射2.5 h后,在0.1 g/L TiO2/C、N-Fe2O3复合材料的光催化作用下,10 mg/L罗丹明B的去除率达到95%,速率常速为0.0192 min-1,效果较TiO2和C、N-Fe2O3有明显提高。所得复合材料稳定性好、可重复利用。MOFs衍生多孔C、N掺杂Fe2O3与TiO2的复合缩短了带隙,强化了空穴与电子的分离从而提高可见光催化活性。
Abstract
TiO2 was added to NH2-MIL-101(Fe) precursor, and TiO2/NH2-MIL-101(Fe) was prepared by solvothermal method. TiO2/C、N-doped Fe2O3 composites (TiO2/C、N-Fe2O3) were further obtained by high-temperature heat treatment. The crystal structure, morphology, composition and spectral characteristics of the obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoelectron spectroscopy (XPS), UV-Vis diffuse reflection (UV-vis DRS) and fluorescence spectroscopy (PL). The photocatalytic activity of Rhodamine B (RhB) was evaluated by degradation of RhB solution under simulated sunlight irradiation. The results show that the band gap width of TiO2 doped with C and N in Fe2O3 decreases after TiO2 mixed with C and N doped with Fe2O3. After 2.5 h of simulated sunlight irradiation, the removal rate of 10 mg/L RhB reaches 95% under the photocatalytic action of 0.1 g/LTiO2/C、N-Fe2O3 composite. The rate is 0.0192 min-1, and the effect is significantly higher than that of TiO2 and C, N-Fe2O3. The composite material has good stability and can be used repeatedly. The band gap is shortened mainly through the composite of porous C and N-doped Fe2O3 and TiO2 derived from MOFs, and the separation of holes and electrons is strengthened, thus the visible light catalytic activity is improved.
关键词
Fe基-MOFs /
光催化 /
TiO2/C、N掺杂Fe2O3 /
罗丹明B
Key words
Fe-based-MOFs /
photocatalysis /
TiO2/C /
N doped Fe2O3 /
RhB
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾祥蕊, 卫静, 刘欣. TiO2光催化剂改性研究进展[J]. 环境保护与循环经济, 2019, 39(8): 28-31, 67.
ZENG X R, WEI J, LIU X.Research progress in modification of TiO2 photocatalyst[J]. Environmental protection and circular economy, 2019, 39(8): 28-31, 67.
[2] 付荣荣, 李延敏, 高善民, 等. TiO2光催化剂的形貌与晶面调控[J]. 无机化学学报, 2014, 30(10): 2231-2245.
FU R R, LI Y M, GAO S M, et al.Morphology and crystal face control of TiO2 photocatalyst[J]. Chinese journal of inorganic chemistry, 2014, 30(10): 2231-2245.
[3] SARAFRAZ M, AMINI M M, ADIBAN M, et al.Facile synthesis of mesoporous black N-TiO2 photocatalyst for efficient charge separation and the visible-driven photocatalytic mechanism of ibuprofen degradation[J]. Materials science in semiconductor processing, 2020, 120: 105258.
[4] GUERRERO-ARAQUE D, RAMÍREZ-ORTEGA D, CALDERON H A, et al. Effect of co-catalyst (CuO, CoO or NiO) on Bi2O3-TiO2 structures and its impact on the photocatalytic reduction of 4-nitrophenol[J]. Topics in catalysis, 2021, 64(1/2): 112-120.
[5] WEI F Y, NI L S, CUI P.Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity[J]. Journal of hazardous materials, 2008, 156(1/2/3): 135-140.
[6] YU Y M, XIA J X, CHEN C, et al.One-step synthesis of a visible-light driven C@N-TiO2 porous nanocomposite: enhanced absorption, photocatalytic and photoelectrochemical performance[J]. Journal of physics and chemistry of solids, 2020, 136: 109169.
[7] LIU G L, HAN C, PELAEZ M, et al.Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles[J]. Nanotechnology, 2012, 23(29): 294003.
[8] ZHAO J K, GE S S, PAN D, et al.Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinous hollow microspheres with sunflower pollen as bio-templates[J]. Journal of colloid and interface science, 2018, 529: 111-121.
[9] HASSAN M E, CHEN Y B, LIU G L, et al.Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light[J]. Journal of water process engineering, 2016, 12: 52-57.
[10] JIAO L, WANG Y, JIANG H L, et al.Metal-organic frameworks as platforms for catalytic applications[J]. Advanced materials, 2018, 30(37): 1703663.
[11] YANG Q H, XU Q, JIANG H L.Metalâ organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical society reviews, 2017, 46(15): 4774-4808.
[12] HOU X B, STANLEY S L, ZHAO M, et al.MOF-based C-doped coupled TiO2/ZnO nanofibrous membrane with crossed network connection for enhanced photocatalytic activity[J]. Journal of alloys and compounds, 2019, 777: 982-990.
[13] LIANG P, ZHANG C, SUN H Q, et al.Photocatalysis of C, N-doped ZnO derived from ZIF-8 for dye degradation and water oxidation[J]. RSC advances, 2016, 6(98): 95903-95909.
[14] YANG S J, IM J H, KIM T, et al.MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity[J]. Journal of hazardous materials, 2011, 186(1): 376-382.
[15] BHADRA B N, SONG J Y, KHAN N A, et al.TiO2-containing carbon derived from a metal-organic framework composite: a highly active catalyst for oxidative desulfurization[J]. ACS applied materials & interfaces, 2017, 9(36): 31192-31202.
[16] WANG D K, HUANG R K, LIU W J, et al.Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways[J]. ACS catalysis, 2014, 4(12): 4254-4260.
[17] ZHENG J J, SUN L, JIAO C Y, et al.Hydrothermally synthesized Ti/Zr bimetallic MOFs derived N self-doped TiO2/ZrO2 composite catalysts with enhanced photocatalytic degradation of methylene blue[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2021, 623: 126629.
[18] ALI A M, EL-HOSAINY H, AL-HAJJI L A, et al. Fe2O3 incorporated anatase/brookite biphasic TiO2 for degradation of phenol under simulated solar light[J]. Optical materials, 2022, 127: 112247.
[19] 杨悦. N掺杂及硅改性TiO2的一步合成和光催化性能探究[D]. 合肥: 安徽工业大学, 2020.
YANG Y.One step synthesis and photocatalytic properties of N-doped and silicon modified TiO2[D]. Hefei:Anhui University of Technology, 2020.
[20] BAO Y C, CHEN K Z.Novel Z-scheme BiOBr/reduced graphene oxide/protonated g-C3N4 photocatalyst: synthesis, characterization, visible light photocatalytic activity and mechanism[J]. Applied surface science, 2018, 437: 51-61.
[21] SAFAEI J, ULLAH H, MOHAMED N A, et al.Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst[J]. Applied catalysis B: environmental, 2018, 234: 296-310.
[22] HONG Y Z, JIANG Y H, LI C S, et al.In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants[J]. Applied catalysis B: environmental, 2016, 180: 663-673.
[23] SIWIŃSKA-CIESIELCZYK K, ŚWIGOŃ D, RYCHTOWSKI P, et al. The performance of multicomponent oxide systems based on TiO2, ZrO2 and SiO2 in the photocatalytic degradation of Rhodamine B: Mechanism and kinetic studies[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2020, 586: 124272.
基金
国家自然科学基金青年项目(51808442)