开封地区砂岩孔隙热储回灌化学堵塞数值模拟研究

黄艳艳, 那金, 雷宏武

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 225-235.

PDF(8580 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(8580 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 225-235. DOI: 10.19912/j.0254-0096.tynxb.2022-1579

开封地区砂岩孔隙热储回灌化学堵塞数值模拟研究

  • 黄艳艳1, 那金1, 雷宏武2
作者信息 +

NUMERICAL SIMULATION STUDY OF CHEMICAL CLOGGING OF SANDSTONE PORE THERMAL RESERVOIRS RESERVOIR BACKFILL IN KAIFENG AREA

  • Huang Yanyan1, Na Jin1, Lei Hongwu2
Author information +
文章历史 +

摘要

以开封圳宇花园的地热开发过程为研究对象,利用TOUGHREACT程序构建三维砂岩孔隙热储层的温度场-化学场-渗流场多场耦合模型,并对主要影响因素进行敏感性分析,探究地热回灌过程对热储层化学堵塞过程的影响。热储层中方解石、石英、伊利石、钙-蒙脱石、二氧化硅矿物沉淀,钾长石、钠长石和白云石矿物溶解,其中方解石矿物为主要沉淀矿物,堵塞回灌井热储层,导致孔隙度降低约10%。回灌过程中回灌水注入流速、温度、井间距的改变影响地热水回灌过程中方解石沉淀,从而导致热储层孔隙度变化。

Abstract

Taking the geothermal development process of Kaifeng Zhenyu Garden as the study object, a three-dimensional sandstone pore thermal reservoir multi-field coupling model of temperature field-chemical field-seepage field was constructed using the TOUGHREACT program, accompanied by the sensitivity analysis of the main influencing factors to investigate the influence of the geothermal reinjection process on the chemical plugging process of the geothermal reservoir. In the thermal reservoir, the minerals such as calcite, quartz, illite, calcium-montmorillonite, and silica dioxide will precipitate. However, the minerals like potassium feldspar, sodium feldspar, and dolomite will dissolve in the geothermal reservoir. Among them, calcite is the main precipitated minerals, which may block the geothermal reservoir of backfill wells, resulting in a porosity reduction of about 10%. The changes of backfill water injection flow rate, temperature, and well spacing during the backfill process affect the precipitation of calcite in the backfill process of geothermal water, thus lead to variation in the porosity of the geothermal reservoir.

关键词

地热井 / 方解石 / 孔隙度 / 化学堵塞 / THC耦合 / TOUGHREACT程序

Key words

geothermal wells / calcite / porosity / chemical clogging / THC coupling / TOUGHREACT program

引用本文

导出引用
黄艳艳, 那金, 雷宏武. 开封地区砂岩孔隙热储回灌化学堵塞数值模拟研究[J]. 太阳能学报. 2024, 45(2): 225-235 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1579
Huang Yanyan, Na Jin, Lei Hongwu. NUMERICAL SIMULATION STUDY OF CHEMICAL CLOGGING OF SANDSTONE PORE THERMAL RESERVOIRS RESERVOIR BACKFILL IN KAIFENG AREA[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 225-235 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1579
中图分类号: P314.9   

参考文献

[1] 周博睿. 我国地热能开发利用现状与未来趋势[J]. 能源, 2022(2): 77-80.
ZHOU B R.Present situation and future trend of geothermal energy development and utilization in China[J]. Energy, 2022(2): 77-80.
[2] 刘久荣. 地热回灌的发展现状[J]. 水文地质工程地质, 2003, 30(3): 100-104.
LIU J R.The status of geothermal reinjection[J]. Hydrogeology and engineering geology, 2003, 30(3): 100-104.
[3] 李凤昱, 许天福, 封官宏, 等. T2Well单井地下水源热泵水-热耦合数值模拟研究[J]. 太阳能学报, 2020, 41(4): 278-286.
LI F Y, XU T F, FENG G H, et al.Simulation for water-heat coupling process of single well ground source heat pump systems implemented by T2Well[J]. Acta energiae solaris sinica, 2020, 41(4): 278-286.
[4] 程万庆. 天津地热回灌化学堵塞研究[D]. 北京: 中国地质大学(北京), 2006.
CHENG W Q.Study on chemical blockage of geothermal recharge in Tianjin[D]. Beijing: China University of Geosciences, 2006.
[5] 刘久荣. 地热回灌井堵塞的原因和防治[C]//全国油区城镇地热开发利用经验交流会. 大庆, 中国, 2003.
LIU J R.Causes and prevention of geothermal recharge well blockage[C]//National Experience Exchange Conference on Geothermal Development and Utilization in Oil Areas. Daqing, China, 2003.
[6] 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺, 2021, 43(2): 203-211.
CAO Q, FANG C H, LI Y, et al.Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil drilling & production technology, 2021, 43(2): 203-211.
[7] ANDRITSOS N, KARABELAS A J, KOUTSOUKOS P G.Scale formation in geothermal plants[C]//International Summer on Direct Application of Geothermal Energy, Under the Auspice of Division of Earth Sciences. Unesco, Iga, 2002.
[8] 田涛, 陈玉林, 姚杰. 地热回灌系统水结垢预测[J]. 地下水, 2011, 33(6): 27-28, 91.
TIAN T, CHEN Y L, YAO J.Scaling presdiction in geothermal reinjection system[J]. Ground water, 2011, 33(6): 27-28, 91.
[9] KAMILA Z, KAYA E, ZARROUK S J.Reinjection in geothermal fields: an updated worldwide review 2020[J]. Geothermics, 2021, 89: 101970.
[10] KAYA E, ZARROUK S J, O’SULLIVAN M J. Reinjection in geothermal fields: a review of worldwide experience[J]. Renewable and sustainable energy reviews, 2011, 15(1): 47-68.
[11] DIAZ A R, KAYA E, ZARROUK S J.Reinjection in geothermal fields:a worldwide review update[J]. Renewable and sustainable energy reviews, 2016, 53: 105-162.
[12] CHEN J Y, XU T F, JIANG Z J, et al.Reducing formation damage by artificially controlling the fluid-rock chemical interaction in a double-well geothermal heat production system[J]. Renewable energy, 2020, 149: 455-467.
[13] PANDEY S N, CHAUDHURI A, RAJARAM H, et al.Fracture transmissivity evolution due to silica dissolution/precipitation during geothermal heat extraction[J]. Geothermics, 2015, 57: 111-126.
[14] CHAI R K, LIU Y T, XUE L, et al.Formation damage of sandstone geothermal reservoirs: during decreased salinity water injection[J]. Applied energy, 2022, 322: 119465.
[15] 邹晶莹. 砂岩热储地热尾水回灌化学堵塞机理研究: 以鲁北地区为例[D]. 青岛: 山东科技大学, 2020.
ZOU J Y.Research on chemical blocking mechanism of recharge of geothermal tailwater in sandstone reservoir: a case study in northern Shandong Prorince[D]. Qingdao: Shandong University of Science and Technology, 2020.
[16] ZHANG L, GENG S H, YANG L C, et al.Formation blockage risk analysis of geothermal water reinjection: rock property analysis, pumping and reinjection tests, and long-term reinjection prediction[J]. Geoscience frontiers, 2022, 13(1): 101299.
[17] MROCZEK E K, GRAHAM D, BACON L.Removal of arsenic and silica from geothermal fluid by electrocoagulation[J]. Journal of environmental chemical engineering, 2019, 7(4): 103232.
[18] HAKLIDIR F T, HAKLIDIR M.Fuzzy control of calcium carbonate and silica scales in geothermal systems[J]. Geothermics, 2017, 70: 230-238.
[19] 戴群, 王聪, 罗杨, 等. 砂岩地热储层回灌堵塞机理研究及治理对策[J]. 精细石油化工进展, 2017, 18(6): 10-13.
DAI Q, WANG C, LUO Y, et al.Research on sandstone geothermal reservoir reinjection plugging mechanism and measures against it[J]. Advances in fine petrochemicals, 2017, 18(6): 10-13.
[20] 刘小满, 王心义. 开封市区地热水可开采量评价[J]. 西部探矿工程, 2005, 17(2): 80-82.
LIU X M, WANG X Y.Evaluation of exploitable yield for geothermal water in Kaifeng urban district[J]. West-China exploration engineering, 2005, 17(2): 80-82.
[21] 齐玉峰, 王现国, 王关杰, 等. 开封凹陷区地热资源开发利用与保护[J]. 地下水, 2007, 29(4): 77-79.
QI Y F, WANG X G, WANG G J, et al.Development and protection of geothermal resources in Kaifeng depression[J]. Ground water, 2007, 29(4): 77-79.
[22] 武佳鑫. 基于地下水热耦合模拟的开封深层地热抽水-回灌研究[D]. 北京: 中国地质大学(北京), 2020.
WU J X.Study on Kaifeng deep geothermal pumping-recharging based on groundwater and geothermal coupling simulation[D]. Beijing: China University of Geosciences, 2020.
[23] 朱红丽. 开封市超深层地热水人工回灌补源研究[D]. 焦作: 河南理工大学, 2011.
ZHU H L.The research on artificial recharge of super-deep geothermic water in Kaifeng city[D]. Jiaozuo: Henan Polytechnic University, 2011.
[24] 朱红丽, 刘小满, 杨芳, 等. 开封市深层地热水回灌试验分析与研究[J]. 河南理工大学学报(自然科学版), 2011, 30(2): 215-219.
ZHU H L, LIU X M, YANG F, et al.Analysis and study on geothermal reinjection test of deep groundwater in Kaifeng[J]. Journal of Henan Polytechnic University (natural science), 2011, 30(2): 215-219.
[25] 齐玉峰. 河南省开封凹陷区地热田地热资源分析[J]. 西南科技大学学报, 2009, 24(3): 75-78.
QI Y F.Analysis on geothermal resources in Kaifeng depression geothermal field of Henan Province[J]. Journal of Southwest University of Science and Technology, 2009, 24(3): 75-78.
[26] 郭友琴, 王现国. 开封凹陷区地热资源[M]. 北京: 中国大地出版社, 2009.
GUO Y Q, WANG X G.Geothermal resources in Kaifeng sag[M]. Beijing: China Land Press, 2009.
[27] 孙放. 地下水数值模拟研究现状及发展趋势[J]. 农业科技与装备, 2013(1): 55-56.
SUN F.Present research and development trend in numerical simulation of underground water[J]. Agricultural science & technology and equipment, 2013(1): 55-56.
[28] 李劲彬. 地下水数值模拟研究[J]. 科技创新与应用, 2018(7): 44-45.
LI J B.Study on numerical simulation of groundwater[J]. Technology innovation and application, 2018(7): 44-45.
[29] 王军进, 张洪伟, 张国珍, 等. 地下水数值模拟方法的研究与应用进展[J]. 环境与发展, 2018, 30(6): 103-104, 106.
WANG J J, ZHANG H W, ZHANG G Z, et al.Develop ment and application of groundwater numerical simulation methods[J]. Environment and development, 2018, 30(6): 103-104, 106.
[30] 王先稳, 马伟芳. 地下水数值模拟的研究与实践进展[C]//中国环境科学学会2019年科学技术年会: 环境工程技术创新与应用分论坛论文集(三). 西安, 中国, 2019: 218-222, 187.
WANG X W, MA W F.Advances in research and practice of groundwater numerical simulation[C]//2019 Science and Technology Annual Meeting of Chinese Society for Environmental Sciences: Proceedings of Sub-Forum on Innovation and Application of Environmental Engineering Technology(Ⅲ). Xi’an, China, 2019: 218-222, 187.
[31] 李凡, 李家科, 马越, 等. 地下水数值模拟研究与应用进展[J]. 水资源与水工程学报, 2018, 29(1): 99-104, 110.
LI F, LI J K, MA Y, et al.The research and application progress of numerical simulation on groundwater[J]. Journal of water resources and water engineering, 2018, 29(1): 99-104, 110.
[32] PRUESS K, OLDENBURG C M, MORIDIS G.TOUGH2 user’s guide version 2-eScholarship[R]. LBNL-43134, 1999.
[33] XU T F, PRUESS K.Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. approaches[R].LBNL-45507, 2000.
[34] XU T F, SONNENTHAL E, SPYCHER N, et al.TOUGHREACT-a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration[J]. Computers & geosciences, 2006, 32(2): 145-165.
[35] LI F Y, XU T F, LI S T, et al.Assessment of energy production in the deep carbonate geothermal reservoir by wellbore-reservoir integrated fluid and heat transport modeling[J]. Geofluids, 2019, 2019: 1-18.
[36] 杨冰, 许天福, 李凤昱, 等. 水-岩作用对储层渗透性影响的数值模拟研究: 以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 526-538.
YANG B, XU T F, LI F Y, et al.Numerical simulation on impact of water-rock interaction on reservoir permeability: a case study of upper Paleozoic sandstone reservoirs in northeastern Ordos Basin[J]. Journal of Jilin University (earth science edition), 2019, 49(2): 526-538.
[37] 杨磊磊. 酸性流体参与的成岩过程中水岩化学作用及对砂岩储层孔隙度的影响[D]. 长春: 吉林大学, 2015.
YANG L L.Acid fluid induced water-rock interaction dur ing diagenesis and its effect on the sandstone reservoir porosity[D]. Changchun: Jilin University, 2015.
[38] 李凤昱, 许天福, 杨磊磊, 等. 不同碎屑矿物CO2参与的水-岩作用效应数值模拟[J]. 石油学报, 2016, 37(9): 1116-1128.
LI F Y, XU T F, YANG L L, et al.Numerical simulation for the water-rock interaction with the participation of CO2 in different clastic minerals[J]. Acta petrolei sinica, 2016, 37(9): 1116-1128.
[39] XU T F, SPYCHER N, SONNENTHAL E, et al.TOUGHREACT version 2.0: a simulator for subsurface reactive transport under non-isothermal multiphase flow conditions[J]. Computers & geosciences, 2011, 37(6): 763-774.
[40] XU T F, YUE G F, WANG F G, et al.Using natural CO2 reservoir to constrain geochemical models for CO2 geological sequestration[J]. Applied geochemistry, 2014, 43: 22-34.
[41] LI J X, WU Z H, TIAN G H, et al.Processes controlling the hydrochemical composition of geothermal fluids in the sandstone and dolostone reservoirs beneath the sedimentary basin in North China[J]. Applied geochemistry, 2022, 138: 105211.
[42] GAN H N, LIU Z M, WANG X A, et al.Effect of temperature and acidification on reinjection of geothermal water into sandstone geothermal reservoirs: laboratory study[J]. Water, 2022, 14(19): 2955.
[43] 马致远, 侯晨, 席临平, 等. 超深层孔隙型热储地热尾水回灌堵塞机理[J]. 水文地质工程地质, 2013, 40(5): 133-139.
MA Z Y, HOU C, XI L P, et al.Reinjection clogging mechanism of used geothermal water in a super-deep-porous reservoir[J]. Hydrogeology & engineering geology, 2013, 40(5): 133-139.

基金

国家自然科学基金(41807194; 41807208)

PDF(8580 KB)

Accesses

Citation

Detail

段落导航
相关文章

/