基于气候资源禀赋的TMY权重因子调整方法研究

李红莲, 王梦丽, 张文豪, 黄金, 吕文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 50-58.

PDF(2653 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2653 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 50-58. DOI: 10.19912/j.0254-0096.tynxb.2022-1585

基于气候资源禀赋的TMY权重因子调整方法研究

  • 李红莲1, 王梦丽1, 张文豪2, 黄金1, 吕文1
作者信息 +

RESEARCH ON ADJUSTMENT METHOD OF TMY WEIGHTING FACTOR BASED ON CLIMATE RESOURCE ENDOWMENT

  • Li Honglian1, Wang Mengli1, Zhang Wenhao2, Huang Jin1, Lyu Wen1
Author information +
文章历史 +

摘要

提出一种基于气候资源禀赋的典型气象年(TMY)权重因子调整方法。在参数间相关分析的基础上,遴选干球温度、相对湿度、日照时数与气温日较差作为分区指标,采用K-均值聚类算法对中国地域气候进行分区,依据台站所处地域的太阳能、风能等资源动态调整TMY权重因子。结果显示,调整后的权重因子构建的TMY更加精准,更能体现地域的气候特征。

Abstract

The paper proposes a TMY weighting factor adjustment method based on climate resource endowment. Based on the correlation analysis among parameters, dry bulb temperature, relative humidity, sunshine hours and diurnal temperature range are selected as zoning indicators, and the K-means clustering algorithm is used to zone the regional climate of China, and the TMY weighting factors are dynamically adjusted according to the solar and wind resources in the regions where the stations are located. The results show that the adjusted weighting factors are more accurate and better reflect the climate characteristics of the region.

关键词

典型气象年 / 权重因子 / 气候资源禀赋 / K-均值聚类算法 / 建筑能耗模拟

Key words

typical meteorological years / weight factors / climate resource endowment / K-means clustering algorithm / building energy consumption simulation

引用本文

导出引用
李红莲, 王梦丽, 张文豪, 黄金, 吕文. 基于气候资源禀赋的TMY权重因子调整方法研究[J]. 太阳能学报. 2024, 45(2): 50-58 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1585
Li Honglian, Wang Mengli, Zhang Wenhao, Huang Jin, Lyu Wen. RESEARCH ON ADJUSTMENT METHOD OF TMY WEIGHTING FACTOR BASED ON CLIMATE RESOURCE ENDOWMENT[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 50-58 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1585
中图分类号: TU119+.1   

参考文献

[1] HALL I J.Generation of typical meteorological years for 26 SOL2MET stations[C]// Proceedings of the 1978 Annual Meeting of the American Section of the International Solar Energy Society. San Diego, CA, USA, 1978: 669-671.
[2] WILLIAM M, KEN U.User’s manual for TMY2s (typical meteorological years)-Derived from the 1961-1990 National Solar Radiation Data Base[R]. United States: National Renewable Energy Laboratory, 1995.
[3] WILCOX S, MARION W.Users manual for TMY3 data sets (revised)[R]. Office of scientific & technical information technical reports, 2008.
[4] 张晴原, 杨洪兴. 建筑用标准气象数据手册[M]. 北京: 中国建筑工业出版社, 2012.
ZHANG Q Y, YANG H X.Typical meteorological database handbook for buildings[M]. Beijing: China Architecture & Building Press, 2012.
[5] 中国气象局气象信息中心气象资料室, 清华大学建筑技术科学系. 中国建筑热环境分析专用气象数据集[M]. 北京: 中国建筑工业出版社, 2005.
Meteorological Data Room of Meteorological Information Center, China Meteorological Administration,Department of Building Technology and Science, Tsinghua University.Special meteorological data set for thermal environment analysis of buildings in China[M]. Beijing: China Architecture & Building Press, 2005.
[6] RAHMAN I A, DEWSBURY J.Selection of typical weather data (test reference years) for Subang, Malaysia[J]. Building and environment, 2007, 42(10): 3636-3641.
[7] OHUNAKIN O S, ADARAMOLA M S, OYEWOLA O M, et al.Generation of a typical meteorological year for north-east, Nigeria[J]. Applied energy, 2013, 112: 152-159.
[8] MANDURINO C, VESTRUCCI P.Using meteorological data to model pollutant dispersion in the atmosphere[J]. Environmental modelling & software, 2009, 24(2): 270-278.
[9] 黄金, 李红莲, 吕凯琳. 一种新的典型气象年权重因子构建方法[J]. 暖通空调, 2021, 51(2): 73-78, 59.
HUANG J, LI H L, LYU K L.New method for constructing weight factors of typical meteorological years[J]. Heating ventilating & air conditioning, 2021, 51(2): 73-78, 59.
[10] 李红莲. 建筑能耗模拟用典型气象年研究[D]. 西安: 西安建筑科技大学, 2016.
LI H L.Research on the typical meteorological year for building energy consumption simulation[D]. Xi’an: Xi’an University of Architecture and Technology, 2016.
[11] 张文豪, 李红莲, 王梦丽, 等. 不同能源系统的典型气象年生成方法研究[J]. 太阳能学报, 2023, 44(3): 8-14.
ZHANG W H,LI H L,WANG M L, et al.Research on generation methods of typical meteorological years for different energy systems[J]. Acta energiae solaris sinica,2023, 44(3): 8-14.
[12] 郭永坤, 章新友, 刘莉萍, 等. 优化初始聚类中心的K-均值聚类算法[J]. 计算机工程与应用, 2020, 56(15): 172-178.
GUO Y K, ZHANG X Y, LIU L P, et al.K-means clustering algorithm of optimizing initial clustering center[J]. Computer engineering and applications, 2020, 56(15): 172-178.
[13] DAVIES D L, BOULDIN D W.A cluster separation measure[J]. IEEE transactions on pattern analysis and machine intelligence, 1979, 1(2): 224-227.
[14] KAUFMAN L, ROUSSEEUW P J.Finding groups in data: an introduction to cluster analysis[M]. New York: Wiley, 1990.
[15] 黄金. 不同地域气候特征下典型气象年权重因子的构建方法及应用[D]. 西安: 西安建筑科技大学, 2021.
HUANG J.The method and application of determining the weight factors of typical meteorological year in different regions[D]. Xi’an: Xi’an University of Architecture and Technology, 2021.
[16] 李红莲, 杨柳, 侯立强, 等. 建筑能耗模拟用典型年气象参数的选取方法[J]. 太阳能学报, 2016, 37(9): 2408-2414.
LI H L, YANG L, HOU L Q, et al.Selection method of meteorological parameters of TMY for building energy consumption simulation[J]. Acta energiae solaris sinica, 2016, 37(9): 2408-2414.
[17] 刘大龙, 杨林祥, 杨竞立. 内蒙古地区建筑节能气候分区研究[J]. 暖通空调, 2020, 50(12): 20-24, 12.
LIU D L, YANG L X, YANG J L.Building energy efficiency climate zoning in Inner Mongolia[J]. Heating ventilating & air conditioning, 2020, 50(12): 20-24, 12.
[18] GB 50189—2015, 公共建筑节能设计标准[S].
GB 50189—2015, Design standard for energy efficiency of public buildings[S].

基金

国家自然科学基金面上项目(52278124)

PDF(2653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/