基于构件形态的高层大跨厂房光伏遮阳设计方法

杨瑛, 高青, 刘柱梁, 徐峰, 周晋

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 451-459.

PDF(3614 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3614 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 451-459. DOI: 10.19912/j.0254-0096.tynxb.2022-1594

基于构件形态的高层大跨厂房光伏遮阳设计方法

  • 杨瑛1, 高青2, 刘柱梁2, 徐峰3, 周晋3
作者信息 +

DESIGN METHOD OF PHOTOVOLTAIC SHADING FOR HIGH-RISE LARGE-SPAN FACTORY BASED ON COMPONENT-BASED MORPHOLOGY

  • Yang Ying1, Gao Qing2, Liu Zhuliang2, Xu Feng3, Zhou Jin3
Author information +
文章历史 +

摘要

为建立基于构件形态参数的高层大跨厂房光伏遮阳设计评价与优化方法,以长沙同有科技项目为例,进行高层大跨厂房光热平衡算法研究。选取光伏遮阳构件的尺寸、倾斜角度以及阵列方式为变量参数,通过对参数化建模、环境性能模拟以及多目标算法的技术集成得到基于构件形态的光热平衡算法模型,其应用结果显示,随着多种光伏遮阳构件形态变量的调控,模型综合性能呈现出非线性的复杂变化模式。

Abstract

In order to establish the evaluation and optimization method of photovoltaic shading design based on component morphological parameters, taking the Changsha Tongyou technology project as an example, a study on the daylight-thermal balance algorithms of high-rise large-span factory was carried out. The size, inclined angle and array method of the photovoltaic shading components are selected as the variable parameters. Daylight-thermal balance algorithm model is obtained by integrating parameter modeling, environmental performance simulation, and multi-objective optimization algorithm. The application of this model in the case study shows that the comprehensive performance of the model presents a non-linear complex changing with the regulation of the morphological variables of multiple photovoltaic shading components.

关键词

高层建筑 / 光伏组件 / 多目标优化 / 建筑设计 / 计算机辅助设计

Key words

high-rise buildings / solar modules / multi-objective optimization / architectural design / computer aided design

引用本文

导出引用
杨瑛, 高青, 刘柱梁, 徐峰, 周晋. 基于构件形态的高层大跨厂房光伏遮阳设计方法[J]. 太阳能学报. 2024, 45(2): 451-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1594
Yang Ying, Gao Qing, Liu Zhuliang, Xu Feng, Zhou Jin. DESIGN METHOD OF PHOTOVOLTAIC SHADING FOR HIGH-RISE LARGE-SPAN FACTORY BASED ON COMPONENT-BASED MORPHOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 451-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1594
中图分类号: TK519   

参考文献

[1] 胡剑平, 饶政华, 廖胜明. 光伏遮阳板与建筑一体化的综合节能效果分析[J]. 建筑节能, 2012, 40(6): 33-37, 53.
HU J P, RAO Z H, LIAO S M.Energy conservation for building integrated with photovoltaic shading system[J]. Building energy efficiency, 2012, 40(6): 33-37, 53.
[2] 鲁永飞, 鞠晓磊, 张磊. 设计前期建筑光伏系统安装面积快速估算方法[J]. 建设科技, 2019(2): 58-62.
LU Y F, JU X L, ZHANG L.Rapid estimation method for installation area of building photovoltaic system in the early design stage[J]. Construction science and technology, 2019(2): 58-62.
[3] YADAV S, PANDA S K.Thermal performance of BIPV system by considering periodic nature of insolation and optimum tilt-angle of PV panel[J]. Renewable energy, 2020, 150: 136-146.
[4] JELLE B P, BREIVIK C.State-of-the-art building integrated photovoltaics[J]. Energy procedia, 2012, 20: 68-77.
[5] JAYATHISSA P, LUZZATTO M, SCHMIDLI J, et al.Optimising building net energy demand with dynamic BIPV shading[J]. Applied energy, 2017, 202: 726-735.
[6] JAYATHISSA P, ZARB J, LUZZATTO M, et al.Sensitivity of building properties and use types for the application of adaptive photovoltaic shading systems[J]. Energy procedia, 2017, 122: 139-144.
[7] WANG D J, QI T, LIU Y F, et al.A method for evaluating both shading and power generation effects of rooftop solar PV panels for different climate zones of China[J]. Solar energy, 2020, 205: 432-445.
[8] SHEN Y, ZHANG J, GUO P, et al.Impact of solar radiation variation on the optimal tilted angle for fixed grid-connected PV array: case study in Beijing[J]. Global energy interconnection, 2018, 1(4): 460-466.
[9] MANDALAKI M, ZERVAS K, TSOUTSOS T, et al.Assessment of fixed shading devices with integrated PV for efficient energy use[J]. Solar energy, 2012, 86(9): 2561-2575.
[10] MANDALAKI M, TSOUTSOS T, PAPAMANOLIS N.Integrated PV in shading systems for Mediterranean countries: balance between energy production and visual comfort[J]. Energy and buildings, 2014, 77: 445-456.
[11] PAYDAR M A.Optimum design of building integrated PV module as a movable shading device[J]. Sustainable cities and society, 2020, 62: 102368.
[12] YADAV S, PANDA S K, HACHEM-VERMETTE C.Method to improve performance of building integrated photovoltaic thermal system having optimum tilt and facing directions[J]. Applied energy, 2020, 266: 114881.
[13] ADAMO A, BERTACCHINI P A, BILOTTA E, et al.Connecting art and science for education: learning through an advanced virtual theater with “talking heads”[J]. Leonardo, 2010, 43(5): 442-448.
[14] LI X, PENG J Q, LI N P, et al.Optimal design of photovoltaic shading systems for multi-story buildings[J]. Journal of cleaner production, 2019, 220: 1024-1038.
[15] BERARDI U, GRAHAM J.Investigation of the impacts of microclimate on PV energy efficiency and outdoor thermal comfort[J]. Sustainable cities and society, 2020, 62: 102402.
[16] GHOSH A, NORTON B, DUFFY A.Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell[J]. Applied energy, 2016, 177: 196-203.
[17] SUN L L, LU L, YANG H X.Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles[J]. Applied energy, 2012, 90(1): 233-240.
[18] SADINENI S B, ATALLAH F, BOEHM R F.Impact of roof integrated PV orientation on the residential electricity peak demand[J]. Applied energy, 2012, 92: 204-210.
[19] BANA S, SAINI R P.Experimental investigation on power output of different photovoltaic array configurations under uniform and partial shading scenarios[J]. Energy, 2017, 127: 438-453.
[20] YADAV S, PANDA S K, HACHEM-VERMETTE C.Optimum azimuth and inclination angle of BIPV panel owing to different factors influencing the shadow of adjacent building[J]. Renewable energy, 2020, 162: 381-396.
[21] 刘艳峰, 王玥, 王登甲, 等. 屋顶光伏发电与遮阳综合节能分析[J]. 太阳能学报, 2019, 40(6): 1545-1552.
LIU Y F, WANG Y, WANG D J, et al.Study on comprehensive energy-saving of shading and photovoltaic performance of roof added PV module[J]. Acta energiae solaris sinica, 2019, 40(6): 1545-1552.
[22] 刘嘉懿, 毕广宏, 赵立华. 广州办公建筑光伏建筑一体化遮阳百叶系统模拟研究[J]. 建筑节能(中英文), 2022, 50(9): 57-61.
LIU J Y, BI G H, ZHAO L H.Simulation of building-integrated solar shading louver system for office buildings in Guangzhou[J]. Building energy efficiency, 2022, 50(9): 57-61.
[23] 庾汉成, 罗成龙. 光伏遮阳板与建筑一体化优化设计和性能研究[J]. 工业建筑, 2009, 39(增刊1): 31-34.
YU H C, LUO C L.Study on oplimization design and characteristic of a building integrated with the photovoltaics[J]. Industrial construction, 2009, 39(S1): 31-34.
[24] 宋德萱, 朱丹, 史洁, 等. 高密度城区建筑光伏遮阳设计应用研究[J]. 新建筑, 2015(1): 100-102.
SONG D X, ZHU D, SHI J, et al.A study on the design application of PV sunshade in high density urban areas[J]. New architecture, 2015(1): 100-102.
[25] PILECHIHA P, MAHDAVINEJAD M, POUR RAHIMIAN F, et al.Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency[J]. Applied energy, 2020, 261: 114356.

基金

中建五局科技研发课题(Cscec-5b-2022-10)

PDF(3614 KB)

Accesses

Citation

Detail

段落导航
相关文章

/