对糖醇基矩形翅片管相变储热器传热性能进行数值模拟与实验研究,利用数值模型研究传热流体入口温度、流量以及储热器翅片间距、管间距等参数对充放热性能的影响。研究表明:从运行参数看,由于相变材料导热系数的影响,翅片强化区外流体入口温度与材料相变温度的温差对充放热速率呈正相关;在管内湍流条件下,管内流速在高于0.53 m/s时,不能显著提升储热器的充放热速率;从结构参数看,增加翅片可显著提升翅片区内充放热速率,翅片间距小于10 mm和管间距小于52.5 mm对充放热速率影响不明显。
Abstract
The numerical simulation and experimental study of the heat transfer performance of a sugar-alcohol-based rectangular-finned tube phase-change heat resevoir were carried out in this paper. The effects of the heat transfer fluid inlet temperature, flow rate, and parameters such as the heat exchanger fin spacing and tube spacing on the heat charging and discharging performance were investigated using numerical models. The study shows that, from the operating parameters, the temperature difference between the fluid inlet temperature outside the fin-reinforced zone and the material phase change temperature is positively related to the heat charging and discharging rate due to the influence of the thermal conductivity of the phase change material; under the condition of turbulent flow inside the tube, the flow rate inside the tube cannot significantly improve the heat charging and discharging rate of the heat reservoir when it is higher than 0.53 m/s; from the structural parameters, increasing the fins can significantly improve the heat charging and discharging rate inside the fin zone. The effect of fin spacing less than 10 mm and tube spacing less than 52.5 mm on the heat charging and discharging rate was not significant. The relevant research can provide theoretical support for the design and thermal management of systems such as building-side high proportion solar thermal storage and heating.
关键词
相变储热 /
共晶糖醇 /
数值模拟 /
太阳能建筑 /
翅片管储热器
Key words
phase change heat storage /
eutectic sugar alcohol /
numerical simulation /
solar building /
finned tube heat reservoir
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076.
CHEN H S, LI H, MA W T, et al.Research progress of energy storage technology in China in 2021[J]. Energy storage science and technology, 2022, 11(3): 1052-1076.
[2] 贺明飞, 王志峰, 原郭丰, 等. 水体型太阳能跨季节储热技术简介[J]. 建筑节能, 2021, 49(10): 66-70.
HE M F, WANG Z F, YUAN G F, et al.A technical introduction of water pit for long-term seasonal solar thermal energy storage[J]. Building energy efficiency, 2021, 49(10): 66-70.
[3] HE M F, WANG Z F, ZHANG J J, et al.Study on heat transfer process of insulated floating cover of water pit for solar seasonal thermal storage[J]. Energy reports, 2022, 8: 1396-1404.
[4] 史巍, 王传涛. 相变材料研究综述[J]. 硅酸盐通报, 2015, 34(12): 3517-3522.
SHI W, WANG C T.Study review on phase change materials[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(12): 3517-3522.
[5] 朱冬生, 叶为标, 汪南, 等. 板翅式热泵相变储热器的实验研究[J]. 太阳能学报, 2012, 33(6): 958-962.
ZHU D S, YE W B, WANG N, et al.Experimental study on heat pump phase change thermal storage device with the plate-fin[J]. Acta energiae solaris sinica, 2012, 33(6): 958-962.
[6] 陈黎, 胡芃, 章高伟. 不同结构组合式相变材料换热器性能分析[J]. 太阳能学报, 2021, 42(6): 177-183.
CHEN L, HU P, ZHANG G W.Performance analysis of heat storage exchanger with different structures of combined type phase change materials[J]. Acta energiae solaris sinica, 2021, 42(6): 177-183.
[7] ABDULATEEF A M, MAT S, SOPIAN K, et al.Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins[J]. Solar energy, 2017, 155: 142-153.
[8] 叶宏, 赵晓, 程丹鹏, 等. 管壳式相变换热器贮热换热效果的数值研究[J]. 太阳能学报, 2008, 29(12): 1499-1503.
YE H, ZHAO X, CHENG D P, et al.Numerical investigation on heat storage and heat exchange of the shell-and-tube phase change heat exchanger[J]. Acta energiae solaris sinica, 2008, 29(12): 1499-1503.
[9] BHAGAT K, PRABHAKAR M, SAHA S K.Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage[J]. Journal of energy storage, 2018, 19: 135-144.
[10] DENG S X, NIE C D, JIANG H J, et al.Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage[J]. International journal of heat and mass transfer, 2019, 130: 532-544.
[11] ZHANG Y, YUAN G F, WANG Y, et al.Solidification of an annular finned tube ice storage unit[J]. Applied thermal engineering, 2022, 212: 118567.
[12] 廖志荣, 李朋达, 田紫芊, 等. 非均匀翅片对级联相变储热系统热性能强化的研究[J]. 发电技术, 2022, 43(1): 83-91.
LIAO Z R, LI P D, TIAN Z Q, et al.Heat transfer enhancement of a cascaded latent heat thermal energy storage system by fins with different uneven layouts[J]. Power generation technology, 2022, 43(1): 83-91.
[13] FAN C G, YUAN G F, WANG Y, et al.Thermal storage performance of eutectic sugar alcohols applied to buildings and enhancement of crystallization[J]. Solar energy, 2022, 234: 231-239.
[14] COSTA M, BUDDHI D, OLIVA A.Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction[J]. Energy conversion and management, 1998, 39(3/4): 319-330.
基金
国家重点研发计划(2019YFE0194300); 中国科学院战略性先导科技专项(A类)(XDA21050200)