由于光伏发电的随机性和不稳定性会影响功率预测的精度,提出一种基于皮尔逊相关系数(PCC)、K-均值算法(K-means)、变分模态分解(VMD)、麻雀搜索算法(SSA)、核函数极限学习机( KELM)的光伏功率短期预测模型。首先,用PCC选取主要因素作为输入;K-均值算法进行相似日聚类,将历史数据聚类为晴天、多云和雨天;其次,VMD对原始信号进行分解,充分提取集合中的输入因素信息,提高数据质量;SSA优化KELM模型的核函数参数和正则化系数解决其参数选择敏感问题;最后,将不同序列预测值叠加得到最终预测结果。仿真结果表明,所提相似日聚类下PCC-VMD-SSA-KELM模型具有较小的预测误差。
Abstract
Because the randomness and instability of photovoltaic power generation will affect the accuracy of power prediction, this paper proposes a short-term photovoltaic power prediction model based on Pearson correlation coefficient (PCC), K-means algorithm (K-means), variational mode decomposition (VMD), sparrow search algorithm (SSA), and kernel based extreme learning machine (KELM). Firstly, PCC is used to select the main factors as input; K-means algorithm clusters the historical data into sunny, cloudy and rainy days. Secondly, VMD decomposes the original signal to fully extract the input factor information in the set to improve the data quality. SSA optimizes the kernel function parameters and regularization coefficients of KELM model to solve its sensitive problem of parameter selection. Finally, the final prediction result is obtained by superimposing the prediction values of different series. The simulation results show that the PCC-VMD-SSA-KELM model with similar day clustering has small prediction error.
关键词
光伏发电 /
功率预测 /
变分模态分解 /
K-均值 /
麻雀算法 /
核函数极限学习机
Key words
photovoltaic power generation /
power forecasting /
variational mode decomposition /
K-means /
sparrow search algorithm /
kernel based extreme learning machine
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谭小钰, 刘芳, 马俊杰, 等. 基于DBN与T-S时变权重组合的光伏功率超短期预测模型[J]. 太阳能学报, 2021, 42(10): 42-48.
TAN X Y, LIU F, MA J J, et al.Ultra-short-term PV power forecasting model based on DBN and T-S time-varying weight combination[J]. Acta energiae solaris sinica, 2021, 42(10): 42-48.
[2] 张姗, 冬雷, 纪德洋, 等. 基于NWP相似性分析的超短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(4): 142-147.
ZHANG S, DONG L, JI D Y, et al.Power forecasting of ultra-short-term photovoltaic station based on NWP similarity analysis[J]. Acta energiae solaris sinica, 2022, 43(4): 142-147.
[3] MISHRA M, DASH P B, NAYAK J, et al.Deep learning and wavelet transform integrated approach for short-term solar PV power prediction[J]. Measurement, 2020, 166: 108250.
[4] LI Q, ZHANG X Y, MA T J, et al.A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine[J]. Energy, 2021, 224: 120094.
[5] 王清亮, 杨博, 应欣峰, 等. 非晴空条件下光伏发电短期功率预测方法[J]. 太阳能学报, 2022,43(3):188-196.
WANG Q L, YANG B, YING X F, et al.Short-term photovoltaic power forecasting method under non-clear sky condition[J]. Acta energiae solaris sinica, 2022,43(3):188-196.
[6] ZHONG J Q, LIU L Y, SUN Q, et al.Prediction of photovoltaic power generation based on general regression and back propagation neural network[J]. Energy procedia, 2018, 152: 1224-1229.
[7] 李秉晨, 于惠钧, 刘靖宇. 基于Kmeans和CEEMD-PE-LSTM的短期光伏发电功率预测[J]. 水电能源科学, 2021, 39(4): 204-208.
LI B C, YU H J, LIU J Y.Prediction of short-term photovoltaic power generation based on Kmeans and CEEMD-PE-LSTM[J]. Water resources and power, 2021, 39(4): 204-208.
[8] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on VMD-LSTM and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[9] HUANG G B, ZHU Q Y, SIEW C K.Extreme learning machine: theory and applications[J]. Neurocomputing, 2006,70(1/2/3): 489-501.
[10] SUN S L, WEI Y J, TSUI K L, et al.Forecasting tourist arrivals with machine learning and internet search index[J]. Tourism management, 2019, 70: 1-10.
[11] 章勇高, 高彦丽, 马迪. 基于GA-KELM的光伏短期出力预测研究[J]. 控制工程, 2018, 25(7): 1155-1159.
ZHANG Y G, GAO Y L, MA D.Research of photo-voltaic short-term output power prediction based on GA-KELM[J]. Control engineering of China, 2018, 25(7): 1155-1159.
[12] CHEN X X, YE Y, DONG C, et al.Grasshopper optimization algorithm combining Gaussian and chaos theory for optimization design[C]//2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). Xiamen, China, 2019: 1484-1488.
[13] 张水平, 高栋. 基于随机替换和混合变异的蜻蜓算法[J]. 科学技术与工程, 2020, 20(22): 9108-9115.
ZHANG S P, GAO D.Dragonfly algorithm based on random substitution and hybrid mutation[J]. Science technology and engineering, 2020, 20(22): 9108-9115.
[14] LIU Z, QIN Z W, ZHU P, et al.An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems[J]. Engineering applications of artificial intelligence, 2020, 95: 103771.
[15] 谢少华, 何山, 闫学勤, 等. 基于SSA-BP神经网络的光伏短期功率预测[J]. 浙江工业大学学报, 2022, 50(6): 628-633.
XIE S H, HE S, YAN X Q, et al.Short term photovoltaic power prediction based on SSA-BP neural network[J]. Journal of Zhejiang University of Technology, 2022, 50(6): 628-633.
[16] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3): 174-182.
YANG J X, ZHANG S, LIU J C, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short-term memory with dual-stage attention mechanism[J]. Automation of electric power systems, 2021, 45(3): 174-182.
[17] 黄敬宇. 融合t分布和Tent混沌映射的麻雀搜索算法研究[D]. 兰州: 兰州大学, 2021.
HUANG J Y.Research on sparrow search algorithm based on fusion of T distribution and Tent chaotic mapping 2[D]. Lanzhou: Lanzhou University, 2021.
[18] 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43(2): 226-232.
LIU G H, SUN W Q, WU Z F, et al.Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta energiae solaris sinica, 2022, 43(2): 226-232.
基金
国家自然科学基金(51877070); 河北省重点研发计划(19214501D; 20314501D); 河北省自然科学基金(E2021208008)