基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究

谭心, 吴林锋, 虞启辉, 刘泽江, 王亚辉, 孙国鑫

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 16-22.

PDF(2431 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2431 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 16-22. DOI: 10.19912/j.0254-0096.tynxb.2022-1609

基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究

  • 谭心, 吴林锋, 虞启辉, 刘泽江, 王亚辉, 孙国鑫
作者信息 +

TEMPERATURE CONTROL RESEARCH OF SOLAR-AIR SOURCE HEAT PUMP HEATING SYSTEM BASED ON ANFIS

  • Tan Xin, Wu Linfeng, Yu Qihui, Liu Zejiang, Wang Yahui, Sun Guoxin
Author information +
文章历史 +

摘要

针对太阳能-空气源热泵供暖系统运行环境复杂多变,模糊控制器的设计高度依赖人工经验的问题,提出一种基于自适应神经模糊推理系统(ANFIS)改进的模糊控制方法。该方法利用ANFIS在复杂系统建模中的优势,结合供暖系统温度响应特性和实际运行数据,建立联合供暖系统变工况ANFIS模型,生成与系统性能适配的模糊规则库并传递给模糊控制器执行。Matlab/Simulink仿真对比试验表明,与单一的模糊控制相比,该方法的控制精度提高了17.65%,调节时间缩短了36.4%,具有更高的控制精度和响应速度。

Abstract

An improved fuzzy control method based on adaptive neuro-fuzzy inference system (ANFIS) is proposed in order to address the issue that the operation environment of solar-air source heat pump heating systems is complex and variable, and the design of fuzzy controller heavily depends on artificial experience. This technique establishes the off-working condition ANFIS model of the combined heating system, generates the fuzzy rule base that adapts to the system performance, and passes it to the fuzzy controller for execution. It makes use of the benefits of ANFIS in complex system modeling, along with the temperature response characteristics of the heating system and the actual operation data. According to the findings of the Matlab/Simulink simulation, the control precision and response speed of this approach are greater by 17.65% and 36.4%, respectively, when compared to a single fuzzy control.

关键词

太阳能 / 空气源热泵 / 联合供暖 / 模糊控制 / 温度控制 / ANFIS

Key words

solar energy / air source heat pump / district heating / fuzzy control / temperature control / ANFIS

引用本文

导出引用
谭心, 吴林锋, 虞启辉, 刘泽江, 王亚辉, 孙国鑫. 基于ANFIS的太阳能-空气源热泵供暖系统温度控制研究[J]. 太阳能学报. 2024, 45(2): 16-22 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1609
Tan Xin, Wu Linfeng, Yu Qihui, Liu Zejiang, Wang Yahui, Sun Guoxin. TEMPERATURE CONTROL RESEARCH OF SOLAR-AIR SOURCE HEAT PUMP HEATING SYSTEM BASED ON ANFIS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 16-22 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1609
中图分类号: TK51    TU83   

参考文献

[1] HUANG B J, LEE C P.Long-term performance of solar-assisted heat pump water heater[J]. Renewable energy, 2004, 29(4): 633-639.
[2] KAYGUSUZ K, AYHAN T.Experimental and theoretical investigation of combined solar heat pump system for residential heating[J]. Energy conversion and management, 1999, 40(13): 1377-1396.
[3] CARBONI C, MONTANARI R.Solar thermal systems: advantages in domestic integration[J]. Renewable energy, 2008, 33(6): 1364-1373.
[4] 孙先鹏, 郭康权, 邹志荣, 等. 太阳能联合空气源热泵系统温室供热实验研究[J]. 太阳能学报, 2016, 37(3): 658-665.
SUN X P, GUO K Q, ZOU Z R, et al.System investigation of a solar combined with air-source heat pump system for greenhouse heating[J]. Acta energiae solaris sinica, 2016, 37(3): 658-665.
[5] POPPI S, BALES C, HEINZ A, et al.Analysis of system improvements in solar thermal and air source heat pump combisystems[J]. Applied energy, 2016, 173: 606-623.
[6] 王晓天. 基于模糊PID温度控制算法的建筑节能调温系统[J]. 科技创新与应用, 2022, 12(17): 6-10.
WANG X T.Energy-saving temperature regulating system based on fuzzy PID temperature control algorithm[J]. Technology innovation and application, 2022, 12(17): 6-10.
[7] KNUUTINEN J, BÖÖK H, RUUSKANEN V, et al. Ground source heat pump control methods for solar photovoltaic-assisted domestic hot water heating[J]. Renewable energy, 2021, 177: 732-742.
[8] GOUDA M M, DANAHER S, UNDERWOOD C P.Quasi-adaptive fuzzy heating control of solar buildings[J]. Building and environment, 2006, 41(12): 1881-1891.
[9] MENDI F, BORAN K, KULEKCI M K.Fuzzy controlled central heating system[J]. International journal of energy research, 2002, 26(15): 1313-1322.
[10] 张志红, 韩直, 肖盛燮, 等. 基于ANFIS交通流实时预测及在MATLAB中的实现[J]. 重庆交通学院学报, 2007, 26(3): 112-115.
ZHANG Z H, HAN Z, XIAO S X, et al.Real-time forecast of traffic flow based on ANFIS and its realization by MATLAB[J]. Journal of Chongqing Jiaotong university, 2007, 26(3): 112-115.
[11] QIAO J F, ZHANG W, HAN H G.Self-organizing fuzzy control for dissolved oxygen concentration using fuzzy neural network 1[J]. Journal of intelligent & fuzzy systems: applications in engineering and technology, 2016, 30(6): 3411-3422.
[12] DAI Y, ZHU X A, ZHOU H B, et al.Trajectory tracking control for seafloor tracked vehicle by adaptive neural-fuzzy inference system algorithm[J]. International journal of computers communications & control, 2018, 13(4): 465-476.
[13] ELHOSSEINI M A, EL SEHIEMY R A, SALAH A H, et al. Modeling and control of an interconnected combined cycle gas turbine using fuzzy and ANFIS controllers[J]. Electrical engineering, 2018, 100(2): 763-785.
[14] 吴小舟, 赵加宁, 魏建民. 供暖型风机盘管散热量计算方法的探讨[J]. 暖通空调, 2010, 40(7): 63-66.
WU X Z, ZHAO J N, WEI J M.Study of heat release calculation method of heating-only fan coil unit[J]. Heating ventilating & air conditioning, 2010, 40(7): 63-66.
[15] TAN X, ZHU Z J, SUN G X, et al.Modeling and simulation of layered water tank based on MATLAB/SIMULINK[J]. Journal of physics: conference series, 2022, 2173(1): 012005.
[16] TAN X, ZHU Z J, SUN G X, et al.Room thermal load prediction based on analytic hierarchy process and back-propagation neural networks[J]. Building simulation, 2022, 15(11): 1989-2002.
[17] 王振浩, 杜虹锦, 李国庆. 基于模糊控制的风电场群并网点电压调节方法[J]. 太阳能学报, 2019, 40(8): 2205-2211.
WANG Z H, DU H J, LI G Q.Voltage regulation method on PCC of wind farms based on fuzzy coordination[J]. Acta energiae solaris sinica, 2019, 40(8): 2205-2211.
[18] 崔高健, 曲永利, 凡东生. 基于模糊控制的集中供热控制器的研究[J]. 建筑节能, 2011, 39(4): 9-10, 28.
CUI G J, QU Y L, FAN D S.Controller analysis of centralized heating system based on fuzzy control[J]. Building energy efficiency, 2011, 39(4): 9-10, 28.
[19] 彭玉楼, 路秋静. 基于自适应神经模糊推理系统的微波炉温度控制[J]. 陕西科技大学学报, 2004, 22(2): 42-44, 85.
PENG Y L, LU Q J.Temperature control of micro-wave oven based on anfis[J]. Journal of Shaanxi University of Science & Technoloy, 2004, 22(2): 42-44, 85.
[20] WANG W C, TAI C C.Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller[J]. The review of scientific instruments, 2017, 88(7): 074702.
[21] 赵刚, 张九根, 杨珊珊, 等. 基于改进遗传算法的模糊温度控制在空调中的应用[J]. 科技通报, 2017, 33(8): 156-161.
ZHAO G, ZHANG J G, YANG S S, et al.Application of fuzzy temperature control in air-condition based on improved GA[J]. Bulletin of science and technology, 2017, 33(8): 156-161.

基金

国家自然科学基金(62365015)内蒙古自然科学基金(2023MS05047; 2021LHBS05005); 内蒙古自治区直属高校基本科研业务费项目(2023RCTD011; 2023YXXS012); 内蒙古自治区高等学校科学技术研究项目(NJZY21393)

PDF(2431 KB)

Accesses

Citation

Detail

段落导航
相关文章

/