附加阻尼控制下风电机组机网耦合载荷建模及分析

杨超, 李东翰, 胡姚刚, 贾勇, 李辉, 刘静

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 102-108.

PDF(2157 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2157 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 102-108. DOI: 10.19912/j.0254-0096.tynxb.2022-1627

附加阻尼控制下风电机组机网耦合载荷建模及分析

  • 杨超1, 李东翰1, 胡姚刚1, 贾勇1, 李辉2, 刘静3
作者信息 +

MODELING AND ANALYSIS ON MACHINE-GRID COUPLING LOADS OF WTGS WITH ADDITIONAL DAMPING CONTROL

  • Yang Chao1, Li Donghan1, Hu Yaogang1, Jia Yong1, Li Hui2, Liu Jing3
Author information +
文章历史 +

摘要

针对附加阻尼控制下风电机组机械载荷问题,开展风电机组机网耦合载荷建模及载荷特性分析研究。采用FAST与Matlab/Simulink软件联合方法,建立综合考虑机组机械特性和电气特性的并网风电机组机网耦合载荷模型。采用所建模型开展附加阻尼控制对机组机械载荷影响的仿真分析,并复现附加阻尼控制下风电机组机械系统与电力系统的机网共振现象。结果表明,所建模型能够表征附加阻尼控制下风电机组机械系统与电力系统的耦合互作用,系统低频振荡会导致机组关键结构出现明显振动载荷,且系统振荡频率与机组机械结构固有振动频率接近时两者共振会急剧加大机组振动载荷。

Abstract

In terms of mechanical loads of the wind turbine generator system (WTGS) with the additional damping control (ADC), modeling and analysis on mechanical loads are carried out for the WTGS considering machine-grid coupling. FAST associated with Matlab/Simulink is used to establish the mechanical-grid coupled model for the loads of the grid-connected WTGS, which takes into account both mechanical and electrical characteristics. Impacts of ADC on mechanical loads of the WTGS with ADC are simulated and investigated through the established model. And the resonance phenomenon between the WTGS mechanical system and the power system is recurred through the model. Results show that, the established model can effectively reflect the coupling interaction between the power system and the mechanical system in the WTGS under ADC, and the low-frequency oscillations of the power system lead to remarkable vibration loads in key WTGS structures, and when the natural vibration frequency of mechanical structures and the power system oscillation frequency approach to each other there is a sharp increase in vibration loads of a WTGS due to their resonance.

关键词

风力发电 / 风电机组 / 结构载荷 / 阻尼控制 / 机网耦合

Key words

wind power / wind turbines / structural loads / damping control / machine-grid coupling

引用本文

导出引用
杨超, 李东翰, 胡姚刚, 贾勇, 李辉, 刘静. 附加阻尼控制下风电机组机网耦合载荷建模及分析[J]. 太阳能学报. 2024, 45(2): 102-108 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1627
Yang Chao, Li Donghan, Hu Yaogang, Jia Yong, Li Hui, Liu Jing. MODELING AND ANALYSIS ON MACHINE-GRID COUPLING LOADS OF WTGS WITH ADDITIONAL DAMPING CONTROL[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 102-108 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1627
中图分类号: TK81   

参考文献

[1] 刘其辉, 田若菡, 贾瑞媛, 等. 基于模糊控制的双馈风电机组次同步振荡自适应抑制策略[J]. 太阳能学报, 2023, 44(7): 392-401.
LIU Q H, TIAN R H, JIA R Y, et al.Adaptive subsynchronous oscillation suppression strategy of double-fed wind power generator based on fuzzy control[J]. Acta energiae solaris sinica, 2023, 44(7): 392-401.
[2] 程鹏, 马静, 李庆, 等. 风电机组电网友好型控制技术要点及展望[J]. 中国电机工程学报, 2020, 40(2): 456-467.
CHENG P, MA J, LI Q, et al.A review on grid-friendly control technologies for wind power generators[J]. Proceedings of the CSEE, 2020, 40(2): 456-467.
[3] 张祥宇, 朱正振, 付媛, 等. 风电互联变惯量系统的暂态稳定分析与分区协同控制[J]. 太阳能学报, 2021, 42(6): 329-336.
ZHANG X Y, ZHU Z Z, FU Y, et al.Transient stability analysis and zonal cooperative control in interconnected variable inertia wind power system[J]. Acta energiae solaris sinica, 2021, 42(6): 329-336.
[4] 胡文波, 贾祺, 刘侃, 等. 低运行工况下直驱风电场电流内环主导的次同步振荡特性研究[J]. 太阳能学报, 2022, 43(4): 341-350.
HU W B, JIA Q, LIU K, et al.Sub-synchronous oscillation of direct drive PMSG based wind farm under low operating conditions connected to weak grid[J]. Acta energiae solaris sinica, 2022, 43(4): 341-350.
[5] GB/T 19963.1—2021, 风电场接入电力系统技术规定第1部分:陆上风电[S].
GB/T 19963.1—2021, Technical specification for connecting wind farm to power system—part 1: on shore wind power[S].
[6] 余希瑞, 周林, 郭珂, 等. 含新能源发电接入的电力系统低频振荡阻尼控制研究综述[J]. 中国电机工程学报, 2017, 37(21): 6278-6290.
YU X R, ZHOU L, GUO K, et al.A survey on low frequency oscillation damping control in power system integrated with new energy power generation[J]. Proceedings of the CSEE, 2017, 37(21): 6278-6290.
[7] DU W J, BI J T, CAO J, et al.A method to examine the impact of grid connection of the DFIGs on power system electromechanical oscillation modes[J]. IEEE transactions on power systems, 2016, 31(5): 3775-3784.
[8] LI Y, FAN L L, MIAO Z X.Wind in weak grids: low-frequency oscillations, subsynchronous oscillations, and torsional interactions[J]. IEEE transactions on power systems, 2020, 35(1): 109-118.
[9] GARMROODI M, HILL D J, VERBIČ G, et al.Impact of tie-line power on inter-area modes with increased penetration of wind power[J]. IEEE transactions on power systems, 2016, 31(4): 3051-3059.
[10] 张子泳, 胡志坚, 刘宇凯. 计及广域信号时变时滞影响的大型双馈风力发电系统附加鲁棒阻尼控制[J]. 电工技术学报, 2014, 29(4): 246-255.
ZHANG Z Y, HU Z J, LIU Y K.Additional robust damping control of large scale DFIG-based wind power generation system with wide-area signals, time-varying delay influence[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 246-255.
[11] SINGH M, ALLEN A J, MULJADI E, et al.Interarea oscillation damping controls for wind power plants[J]. IEEE transactions on sustainable energy, 2015, 6(3): 967-975.
[12] LIAO K, HE Z Y, XU Y, et al.A sliding mode based damping control of DFIG for interarea power oscillations[J]. IEEE transactions on sustainable energy, 2017, 8(1): 258-267.
[13] EDRAH M, LO K L, ANAYA-LARA O.Reactive power control of DFIG wind turbines for power oscillation damping under a wide range of operating conditions[J]. IET generation, transmission & distribution, 2016, 10(15): 3777-3785.
[14] LIAO K, XU Y, HE Z Y, et al.Second-order sliding mode based P-Q coordinated modulation of DFIGs against interarea oscillations[J]. IEEE transactions on power systems, 2017, 32(6): 4978-4980.
[15] GURUNG N, BHATTARAI R, KAMALASADAN S.Optimal oscillation damping controller design for large-scale wind integrated power grid[J]. IEEE transactions on industry applications, 2020, 56(4): 4225-4235.
[16] 张辰, 柯德平, 孙元章. 双馈风电机组附加阻尼控制器与同步发电机PSS协调设计[J]. 电力系统自动化, 2017, 41(8): 30-37.
ZHANG C, KE D P, SUN Y Z.Coordinative design for supplementary damping controller of doubly-fed induction generator and PSS of synchronous generator[J]. Automation of electric power systems, 2017, 41(8): 30-37.
[17] 李生虎, 孙琪, 石雪梅, 等. 基于区域极点配置的风电系统弱阻尼低频振荡模式抑制[J]. 电力系统保护与控制, 2017, 45(20): 14-20.
LI S H, SUN Q, SHI X M, et al.Suppression of weakly damped low-frequency modes of wind power system based on regional pole placement[J]. Power system protection and control, 2017, 45(20): 14-20.
[18] OKEDU K E.Effect of ECS low-pass filter timing on grid frequency dynamics of a power network considering wind energy penetration[J]. IET renewable power generation, 2017, 11(9): 1194-1199.
[19] BOSSANYI E A.GH bladed theory manual[R]. Bristol: gaerrad hassan and partners limited, 2015.
[20] JONKMAN J M, BUHL M L .FAST user’s guide[R]. National Renewable Energy Laboratory(NREL), Golden, Co, tech. rep., 2005.
[21] KLEIN M, ROGERS G J, KUNDUR P.A fundamental study of inter-area oscillations in power systems[J]. IEEE transactions on power systems, 1991, 6(3): 914-921.

基金

重庆市基础科学与前沿技术研究专项基金(cstc2020jcyj-msxmX0395); 重庆市教委科学技术研究项目(KJQN201901104); 国家自然科学基金(51675354)

PDF(2157 KB)

Accesses

Citation

Detail

段落导航
相关文章

/