适用于可再生能源制氢的大容量碱液电解槽建模研究

程浩然, 夏杨红, 何杭航, 韦巍, 赵波

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 291-299.

PDF(2629 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2629 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 291-299. DOI: 10.19912/j.0254-0096.tynxb.2022-1629

适用于可再生能源制氢的大容量碱液电解槽建模研究

  • 程浩然1, 夏杨红1, 何杭航1, 韦巍1, 赵波2
作者信息 +

MODELING OF LARGE-CAPACITY ALKALINE ELECTROLYZERS FOR HYDROGEN PRODUCTION FROM RENEWABLE ENERGY

  • Cheng Haoran1, Xia Yanghong1, He Hanghang1, Wei Wei1, Zhao Bo2
Author information +
文章历史 +

摘要

考虑分布式参数的影响,研究外部电场激励下大容量碱液电解槽的反应特性,发现电解槽的宏观物理结构对系统的运行特性有较大影响,基于此提出一种新型碱液制氢电解槽等效电路模型。通过对不同工况下电解槽的工作状态和反应过程进行分析,揭示外部电场对大容量碱液电解槽反应的激励机理。研究发现:相比于电极材料微观特性,电解槽的结构尺寸对宽范围工况下系统的运行特性起到更为关键的作用。最后,基于自制的碱液电解槽原理样机进行宽范围电解制氢实验,发现在不同工况下,所提模型均能较好地刻画电解槽的运行特性,并验证了模型的有效性。

Abstract

The traditional model of alkaline water electrolyzers (AWEs) is established based on electrochemical equations and only suitable for micro-electrolysis systems with a single electrolysis cell. However, for large-capacity AWEs used for hydrogen production from renewable energy, traditional models have great limitations and cannot fully describe operating characteristics in wide range. By analyzing the reaction process of the electrolyzers under different working conditions, this paper reveals the excitation mechanism of the external electric field for the reaction of the large-capacity AWEs and a new equivalent circuit model of the AWEs is proposed. It is found that the physical structure of the electrolytic cell has a more critical influence on the characteristics of the AWEs than that of the microscopic characteristics of the electrode material in wide range. Finally, based on the prototype of the self-made AWEs, experiment for hydrogen production is carried out. The results show that the model proposed in this paper can better describe the operating characteristics of the electrolyzers under different working conditions.

关键词

可再生能源 / 制氢 / 电解槽 / 等效电路模型

Key words

renewable energy / hydrogen production / electrolytic cells / equivalent circuit model

引用本文

导出引用
程浩然, 夏杨红, 何杭航, 韦巍, 赵波. 适用于可再生能源制氢的大容量碱液电解槽建模研究[J]. 太阳能学报. 2024, 45(2): 291-299 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1629
Cheng Haoran, Xia Yanghong, He Hanghang, Wei Wei, Zhao Bo. MODELING OF LARGE-CAPACITY ALKALINE ELECTROLYZERS FOR HYDROGEN PRODUCTION FROM RENEWABLE ENERGY[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 291-299 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1629
中图分类号: TQ151.1+5   

参考文献

[1] ULLEBERG Ø.Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International journal of hydrogen energy, 2003, 28(1): 21-33.
[2] JANG D, CHOI W, CHO H S, et al.Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system[J]. Journal of power sources, 2021, 506: 230106.
[3] JANG D, CHO H S, KANG S.Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Applied energy, 2021, 287: 116554.
[4] RODRÍGUEZ J, AMORES E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production[J]. Processes, 2020, 8(12): 1634.
[5] HAVERKORT J W, RAJAEI H.Voltage losses in zero-gap alkaline water electrolysis[J]. Journal of power sources, 2021, 497: 229864.
[6] HAMMOUDI M, HENAO C, AGBOSSOU K, et al.New multi-physics approach for modelling and design of alkaline electrolyzers[J]. International journal of hydrogen energy, 2012, 37(19): 13895-13913.
[7] ABDIN Z, WEBB C J, GRAY E M.Modelling and simulation of an alkaline electrolyser cell[J]. Energy, 2017, 138: 316-331.
[8] 张财志. 太阳能电解水制氢系统的建模与仿真研究[D]. 成都: 西南交通大学, 2009.
ZHANG C Z.Modeling and simulation of electrolyzers for hydrogen production by solar energy[D]. Chengdu: Southwest Jiaotong University, 2009.
[9] DAVID M, ALVAREZ H, OCAMPO-MARTINEZ C, et al.Dynamic modelling of alkaline self-pressurized electrolyzers: a phenomenological-based semiphysical approach[J]. International journal of hydrogen energy, 2020, 45(43): 22394-22407.
[10] HAUG P, KREITZ B, KOJ M, et al.Process modelling of an alkaline water electrolyzer[J]. International journal of hydrogen energy, 2017, 42(24): 15689-15707.
[11] JIANG Y, HUANG J B, MAO B G, et al.Inside solid-liquid interfaces: understanding the influence of the electrical double layer on alkaline hydrogen evolution reaction[J]. Applied catalysis B: environmental, 2021, 293: 120220.
[12] CHENG H R, WU Y T, XIA Y H, et al.An improved model for hydrogen production by alkaline water electrolysis[C]//2021 IEEE 5th Conference on Energy Internet and Energy System Integration(EI2). Taiyuan, China, 2021: 2032-2037.
[13] SÁNCHEZ M, AMORES E, ABAD D, et al. Aspen Plus model of an alkaline electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2019, 45(7): 3916-3929.
[14] SÁNCHEZ M, AMORES E, RODRÍGUEZ L, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15 kW alkaline water electrolyzer[J]. International journal of hydrogen energy, 2018, 43(45): 20332-20345.
[15] TIJANI A S, YUSUP N A B, ABDOL RAHIM A H. Mathematical modelling and simulation analysis of advanced alkaline electrolyzer system for hydrogen production[J]. Procedia technology, 2014, 15: 798-806.
[16] ZHANG H C, LIN G X, CHEN J C.Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2010, 35(20): 10851-10858.
[17] HENAO C, AGBOSSOU K, HAMMOUDI M, et al.Simulation tool based on a physics model and an electrical analogy for an alkaline electrolyser[J]. Journal of power sources, 2014, 250: 58-67.
[18] BELMOKHTAR K, DOUMBIA M L, AGBOSSOU K.Dynamic model of an alkaline electrolyzer based an artificial neural networks[C]//2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies(EVER), Monte Carlo, Monaco, 2013: 1-4.

基金

国家重点研发计划(2020YFB1506800); 国网科技部项目(52110421005H); 国家自然科学基金(U2166203); 浙江省尖兵领雁攻关项目(2022C01161); 中央高校基本科研业务费专项资金(226-2022-00053)

PDF(2629 KB)

Accesses

Citation

Detail

段落导航
相关文章

/