风氢耦合系统参与现货市场的竞标策略及优化调度方法

梁宁, 潘郑楠, 徐慧慧, 郑峰, 何熙宇, 张江云

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 351-359.

PDF(1593 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1593 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 351-359. DOI: 10.19912/j.0254-0096.tynxb.2022-1631

风氢耦合系统参与现货市场的竞标策略及优化调度方法

  • 梁宁1, 潘郑楠1, 徐慧慧2, 郑峰3, 何熙宇1, 张江云1
作者信息 +

BIDDING STRATEGY AND OPTIMAL DISPATCHING METHOD OF WIND-HYDROGEN COUPLING SYSTEM PARTICIPATING IN SPOT MARKET

  • Liang Ning1, Pan Zhengnan1, Xu Huihui2, Zheng Feng3, He Xiyu1, Zhang Jiangyun1
Author information +
文章历史 +

摘要

为解决高比例风电市场竞标能力弱、市场消纳困难的问题,提出高比例风电耦合氢储能系统联合参与现货市场竞价的双层Stackelberg博弈模型。首先,研究风氢耦合系统内部能量转换关系,揭示风氢耦合系统的能量“时空平移”机理,在综合考虑风氢耦合系统收益和成本的基础上,建立风电投标和氢储能充放电决策模型;其次,兼顾风氢耦合系统和独立系统运营商的利益诉求,基于Stackelberg博弈建立以火电机组、风氢耦合系统为主体的市场出清模型;最后,针对双层模型求解困难的问题,运用KKT条件和强对偶理论将双层模型转换为易于求解的单层混合整数规划模型。仿真结果表明,所提策略对高比例风电的市场消纳起到了积极作用。

Abstract

In order to solve the problems of weak bidding ability and difficult market accommodation in high proportion wind power market, a bi-level Stackelberg game model of high proportion wind power coupled hydrogen energy storage system participating in spot market bidding is proposed. Firstly, the internal energy conversion relationship of the wind-hydrogen coupling system is studied, and the energy“time-space translation”mechanism of the wind-hydrogen coupling system is revealed. Considering the benefits of the wind-hydrogen coupling system and the cost of wind curtailment, the wind power bidding and hydrogen energy storage charging and discharging decision models are established. Secondly, taking into account the interests of wind-hydrogen coupling system and independent system operators, a market clearing model with thermal power units and wind-hydrogen coupling system as the main body is established based on Stackelberg game. Finally, aiming at the difficulty of solving the two-layer model, the KKT(Karush-Kuhu-Tucker) condition and strong duality theory are used to transform the bi-level model into a single-level mixed integer programming model which is easy to be solved. The simulation results show that the proposed strategy has played a positive role in the market consumption of high proportion of wind power.

关键词

电力市场 / 风电 / 博弈论 / 氢储能 / 双层优化调度 / 竞标策略

Key words

power markets / wind power / game theory / hydrogen storage / bi-level optimal scheduling / bidding strategy

引用本文

导出引用
梁宁, 潘郑楠, 徐慧慧, 郑峰, 何熙宇, 张江云. 风氢耦合系统参与现货市场的竞标策略及优化调度方法[J]. 太阳能学报. 2024, 45(2): 351-359 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1631
Liang Ning, Pan Zhengnan, Xu Huihui, Zheng Feng, He Xiyu, Zhang Jiangyun. BIDDING STRATEGY AND OPTIMAL DISPATCHING METHOD OF WIND-HYDROGEN COUPLING SYSTEM PARTICIPATING IN SPOT MARKET[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 351-359 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1631
中图分类号: TM73   

参考文献

[1] 白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
BAI J H, XIN S X, LIU J, et al.Roadmap of realizing the high penetration renewable energy in China[J]. Proceedings of the CSEE, 2015, 35(14): 3699-3705.
[2] 李竹, 宋莉, 于松泰, 等. 促进可再生能源市场化的省内中长期运行策略研究[J]. 太阳能学报, 2023, 44(2): 317-325.
LI Z, SONG L, YU S T, et al.Research on medium and long-term operation strategy of promoting marketization of renewable energy in province[J]. Acta energiae solaris sinica, 2023, 44(2): 317-325.
[3] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462.
LI Z, ZHANG R, SUN H X, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462.
[4] 帅逸轩, 赵培轩, 刘慧敏, 等. 基于多功率耦合的风光互补制氢系统容量配置优化方法[J]. 太阳能学报, 2022, 43(11): 474-481.
SHUAI Y X, ZHAO P X, LIU H M, et al.Optimization of battery capacity for wind-solar complementary hydrogen production system under multi-power conditions[J]. Acta energiae solaris sinica, 2022, 43(11): 474-481.
[5] PELÁEZ-PELÁEZ S, COLMENAR-SANTOS A, PÉREZ-MOLINA C, et al. Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector[J]. Energy, 2021, 224: 120110.
[6] 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42(1): 170-179.
LIU J C, ZHOU C Y, GAO H J, et al.A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power system technology, 2018, 42(1): 170-179.
[7] 张哲原, 李凌, 丁苏阳, 等. 风电场柔性并网辅助系统及其优化模型[J]. 电网技术, 2019, 43(4): 1120-1127.
ZHANG Z Y, LI L, DING S Y, et al.Modeling and operation strategy research on flexible wind farm grid-connection auxiliary system[J]. Power system technology, 2019, 43(4): 1120-1127.
[8] WEI F R, SUI Q, LI X S, et al.Optimal dispatching of power grid integrating wind-hydrogen systems[J]. International journal of electrical power & energy systems, 2021, 125: 106489.
[9] 李咸善, 杨宇翔. 基于双向电价补偿的含氢储能风电和梯级水电联合优化调度[J]. 电网技术, 2020, 44(9): 3297-3306.
LI X S, YANG Y X.Optimization dispatching for joint operation of hydrogen storage-wind power and cascade hydropower station based on bidirectional electricity price compensation[J]. Power system technology, 2020, 44(9): 3297-3306.
[10] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[11] 方宇晨, 赵书强. 聚光型太阳能电站与风电场联合优化运行及竞价策略[J]. 中国电机工程学报, 2020, 40(1): 39-49, 372.
FANG Y C, ZHAO S Q.Joint optimal operation and bidding strategies of concentrating solar power plants with wind farms[J]. Proceedings of the CSEE, 2020, 40(1): 39-49, 372.
[12] 王晛, 张凯, 张少华, 等. 风电参与投标竞争的多能源市场博弈分析[J]. 太阳能学报, 2021, 42(1): 279-285.
WANG X, ZHANG K, ZHANG S H, et al.Game analysis of multi-energy markets considering wind power bidding[J]. Acta energiae solaris sinica, 2021, 42(1): 279-285.
[13] 钟佳宇, 陈皓勇, 陈武涛, 等. 含灵活性资源交易的电力市场实时出清[J]. 电网技术, 2021, 45(3): 1032-1041.
ZHONG J Y, CHEN H Y, CHEN W T, et al.Real-time clearing of electricity markets with flexible resource transactions[J]. Power system technology, 2021, 45(3): 1032-1041.
[14] 陈启鑫, 刘学, 房曦晨, 等. 考虑可再生能源保障性消纳的电力市场出清机制[J]. 电力系统自动化, 2021, 45(6): 26-33.
CHEN Q X, LIU X, FANG X C, et al.Electricity market clearing mechanism considering guaranteed accommodation of renewable energy[J]. Automation of electric power systems, 2021, 45(6): 26-33.
[15] 李力行, 苗世洪, 余璟, 等. 源荷双侧不确定因素影响下基于Rubinstein博弈的电网双层定价模型[J]. 电工技术学报, 2019, 34(增刊2): 729-741.
LI L X, MIAO S H, YU J, et al.Double-layer pricing model of power grid based on Rubinstein game under the influence of source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(S2): 729-741.
[16] 万玉良, 尚国政, 刘蒙聪, 等. 考虑源荷不确定性的分时电价动态修正机制研究[J]. 太阳能学报, 2022, 43(11): 493-500.
WAN Y L, SHANG G Z, LIU M C, et al.Research on dynamic correction mechanism of time-of-use electricity price considering uncertainty of source and load[J]. Acta energiae solaris sinica, 2022, 43(11): 493-500.
[17] 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.
LI L R, PENG J, FU B, et al.Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta energiae solaris sinica, 2022, 43(6): 508-520.
[18] CHEN X Y, LYU J J, MCELROY M B, et al.Power system capacity expansion under higher penetration of renewables considering flexibility constraints and low carbon policies[J]. IEEE transactions on power systems, 2018, 33(6): 6240-6253.
[19] 陆承宇, 江婷, 邓晖, 等. 基于合作博弈的含清洁能源发电商参与现货市场竞价策略及收益分配[J]. 电力建设, 2020, 41(12): 150-158.
LU C Y, JIANG T, DENG H, et al.Bidding strategy and profit distribution of power generation company with clean energy in spot market based on cooperative game theory[J]. Electric power construction, 2020, 41(12): 150-158.
[20] 李泽宏, 曾杨超, 周畅游, 等. 基于电力现货市场出清模拟的节点电价影响因素分析[J]. 电气技术, 2020, 21(5): 41-47.
LI Z H, ZENG Y C, ZHOU C Y, et al.Analysis of effect factors of nodal price based on electric spot market clearing simulation[J]. Electrical engineering, 2020, 21(5): 41-47.
[21] 丰颖, 贠志皓, 周琼, 等. 考虑风电接入的在线风险评估和预防控制[J]. 电力自动化设备, 2017, 37(2): 61-68.
FENG Y, YUN Z H, ZHOU Q, et al.Online risk assessment and preventive control considering wind-power integration[J]. Electric power automation equipment, 2017, 37(2): 61-68.
[22] TSIMOPOULOS E G, GEORGIADIS M C.Withholding strategies for a conventional and wind generation portfolio in a joint energy and reserve pool market: a gaming-based approach[J]. Computers & chemical engineering, 2020, 134: 106692.

基金

国家自然科学基金(52167010); 云南省基础研究计划(202101AU070015); 云南省人才培养项目(KKSY201904013)

PDF(1593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/