由于微地形、微气象的影响,风电场风速的随机性特征复杂,为准确描述风速的随机性特征,提出基于分量相依性的风速随机性特征建模方法。首先对风速序列的随机性特征进行提取,采用变分模态分解(VMD)将风速分解为多个不同频率的模态分量,以序列自相关系数(AC)为指标,对风速成分进行划分,得到风速的波动性分量和随机性分量。然后,考虑风速随机性分量对波动性分量的相依性,以正态分布描述不同风速下的随机性特征,建立基于分量相依性的风速随机性模型。以华北张家口某风电场的运行数据为例,验证该方法的有效性。实验结果表明该文方法能更好地复现风速序列的随机性特征。
Abstract
Due to the influence of microtopography and micrometeorology, the randomness characteristics of wind speed in wind farms are complex. To accurately describe the randomness characteristics of wind speed, a feature modeling method based on component dependency is proposed. Firstly, the randomness of the wind speed series is extracted, and the wind speed is decomposed into several modal components with different frequencies by using the variational mode decomposition (VMD). With the serial autocorrelation coefficient (AC) as the index, the wind speed component is divided, and the fluctuation component and randomness component of wind speed are obtained. Then, considering the dependence of the wind speed randomness component on the fluctuation component, the normal distribution is used to describe the randomness feature under different wind speeds, and a wind speed randomness model based on component dependency is established. The effectiveness of this method is verified by the operation data of a wind farm in Zhangjiakou, North China. The experimental results show that this method can better reproduce the random characteristics of wind speed series.
关键词
风速 /
随机性 /
特征提取 /
分量相依性 /
统计方法
Key words
wind speed /
randomness /
feature extraction /
component dependency /
statistical method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于达仁, 刘金福, 万杰. 风电不确定性建模理论[M]. 北京: 科学出版社, 2017.
YU D R, LIU J F, WAN J.Uncertainty modeling theory of wind power[M]. Beijing: Science Press, 2017.
[2] ZHANG Y G, CHEN Y C, QI Z H, et al.A hybrid forecasting system with complexity identification and improved optimization for short-term wind speed prediction[J]. Energy conversion and management, 2022, 270: 116221.
[3] 张楠, 黄越辉, 王晶, 等. 基于聚类算法的风电波动过程研究[J]. 电测与仪表, 2020, 57(6): 73-81.
ZHANG N, HUANG Y H, WANG J, et al.Analysis of wind power fluctuation characteristics of three-north regions based on clustering algorithm[J]. Electrical measurement & instrumentation, 2020, 57(6): 73-81.
[4] WANG J J, GAO D M, ZHUANG Z Z, et al.An optimized complementary prediction method based on data feature extraction for wind speed forecasting[J]. Sustainable energy technologies and assessments, 2022, 52: 102068.
[5] NIU X S, WANG J Y.A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting[J]. Applied energy, 2019, 241: 519-539.
[6] YANG S, LI C, LI X F, et al.Wind power fluctuation characteristics of Three North regions based on clustering algorithm[J]. The journal of engineering, 2017, 2017(13): 2266-2270.
[7] LI C S, XIAO Z G, XIA X, et al.A hybrid model based on synchronous optimisation for multi-step short-term wind speed forecasting[J]. Applied energy, 2018, 215: 131-144.
[8] ZHANG Y, XU Y J, GUO H, et al.A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations[J]. Renewable energy, 2018, 125: 121-132.
[9] 刘辉, 李岩, 曹权. 基于小波分解的神经网络组合风速预测[J]. 电气自动化, 2021, 43(1): 45-47, 75.
LIU H, LI Y, CAO Q.Wind speed prediction through neural network combination based on wavelet decomposition[J]. Electrical automation, 2021, 43(1): 45-47, 75.
[10] 高阳, 钟宏宇, 陈鑫宇, 等. 基于神经网络和小波分析的超短期风速预测[J]. 可再生能源, 2016, 34(5): 705-711.
GAO Y, ZHONG H Y, CHEN X Y, et al.Ultra short term wind speed forecasting based on neural network and wavelet analysis[J]. Renewable energy resources, 2016, 34(5): 705-711.
[11] XU M, WANG B, LI X Y, et al.Dynamic response mechanism of the galloping energy harvester under fluctuating wind conditions[J]. Mechanical systems and signal processing, 2022, 166: 108410.
[12] DE TOMMASI L, GIBESCU M, BRAND A J.A dynamic wind farm aggregate model for the simulation of power fluctuations due to wind turbulence[J]. Journal of computational science, 2010, 1(2): 75-81.
[13] ZHANG Y G, ZHAO Y P, SHEN X Y, et al.A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms[J]. Applied energy, 2022, 305: 117815.
[14] 郑若楠. 基于小波分解的超短期风速混合模型组合预测[J]. 分布式能源, 2018, 3(6): 38-46.
ZHENG R N.Combination prediction method of ultra-short-term wind speed by using a hybrid model based on wavelet decomposition[J]. Distributed energy, 2018, 3(6): 38-46.
[15] 王福忠, 王帅峰, 张丽. 基于VMD-LSTM与误差补偿的光伏发电超短期功率预测[J]. 太阳能学报, 2022, 43(8): 96-103.
WANG F Z, WANG S F, ZHANG L.Ultra short term power prediction of photovoltaic power generation based on vmd-lstm and error compensation[J]. Acta energiae solaris sinica, 2022, 43(8): 96-103.
[16] 张家安, 王军燕, 董存, 等. 考虑非独立增量过程的风速波动特征建模方法[J].太阳能学报, 2023, 44(10): 284-290.
ZHANG J A, WANG J Y, DONG C, et al.Modeling method of wind speed fluctuation considering non-independent incremental process[J]. Acta energiae solaris sinica, 2023, 44(10): 284-290.
基金
河北省自然科学基金创新群体项目(E2020202142)