采用一种简单、有效的方法来改善风力机尾流效应,提升下游风力机功率。进行叶片旋向对风力机尾流特性的试验研究,利用低频粒子图像测速(PIV)系统对NACA4415翼型的叶片进行扰流流场测试并采集风力机的尾流数据。当2台串列排布的风力机旋向不同时,首先在下游风力机前1D(D为风轮直径)处,叶尖涡涡核位置向中央尾迹区偏移,而外部主流区的流体在叶尖涡诱导区的输运和卷吸作用下持续进入中央尾迹区并与之掺混使得轴向速度恢复得更佳;进而分析下游风力机后1D的流场数据,结果显示:虽然下游风力机叶尖涡几何结构被“打碎”,但涡核能量却未降低;最后探讨影响风力机功率特性的因素,下游风力机入流角的增大促使下游风力机捕获更多风能,在风轮间距为2D时,逆向旋转的功率比比同向旋转时高4.70%,且功率比随间距增加其增幅逐渐减小。
Abstract
In this paper, a simple and effective method was used to improve the wake effect of the wind turbine and increase the power of the downstream wind turbine. An experiment was carried out to investigate the influence of different rotation directions of the blade on the wake of the wind turbine. The low-frequency PIV system was used to test the turbulence flow field produced by the NACA4415 airfoil and collect the data of the wake of the wind turbine. As the results, when two wind turbines arranged in tandem have different rotation directions, at the 1D(D is the diameter of the wind turbine) in front of the downstream wind turbine, the position of the tip vortex core shifts to the central wake region. And the flow in the external main region, due to the inducible effect, is sucked into the central wake region and blended with its flow, speeding up the axial velocity. For the 1D flow field data of the downstream wind turbine, the results show that the vortex core energy does not decrease, even though geometry structure of blade-tip vortex of the wind turbine downstream is “broken”. Finally, the factors affecting the power characteristics of wind turbines are discussed. The result shows that with the increase of the inflow angle of the downstream wind turbine, more wind energy can be captured. When the distance between the wind turbines is 2D and the blades rotate counterclockwise, the power ratio is 4.70% higher than that rotate clockwise, and the increase of the power ratio gradually decreases with the increase of the distance.
关键词
叶片旋向 /
粒子图像测速法 /
水平轴风力机 /
气动性能 /
尾迹流场 /
功率
Key words
blade rotation direction /
PIV /
horizontal axis wind turbine /
aerodynamics /
wake flow field /
power
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 武钢. 风电发展助力实现“双碳”目标[J]. 中国电力企业管理, 2022(31): 10-12.
WU G.Wind power development helps to achieve the goal of “double carbon”[J]. China power enterprise management, 2022(31): 10-12.
[2] MAGNUSSON M.Near-wake behaviour of wind turbines[J]. Journal of wind engineering and industrial aerodynamics, 1999, 80(1/2): 147-167.
[3] MULLER Y A, AUBRUN S, MASSON C.Determination of real-time predictors of the wind turbine wake meandering[J]. Experiments in fluids, 2015, 56(3): 1-11.
[4] 黄凤兵. 水平轴风力机流场分析及叶尖涡控制研究[D]. 南京: 南京航空航天大学, 2012.
HUANG F B.Research on flow field and tip vortex control of horizontal axis wind turbine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
[5] 胡丹梅, 吴志祥, 张开华, 等. 不同小翼对风力机气动性能影响的数值分析[J]. 动力工程学报, 2019, 39(6): 486-491.
HU D M, WU Z X, ZHANG K H, et al.Numerical analysis on the aerodynamic characteristics of a wind turbine with different winglets[J]. Journal of Chinese Society of Power Engineering, 2019, 39(6): 486-491.
[6] 张骏, 苏阳, 李勇, 等. 大型风力机叶片涡流发生器流动控制的数值研究[J]. 华电技术, 2021, 43(12): 66-71.
ZHANG J, SU Y, LI Y, et al.Numerical study on the flow control of vortex generators on large wind turbine blades[J]. Huadian technology, 2021, 43(12): 66-71.
[7] 熊国专, 胡鹏, 杨培文, 等. 基于集中式变流器的风电机群功率输出控制[J]. 电气技术与经济, 2022(2): 24-28.
XIONG G Z, HU P, YANG P W, et al.Power output control of wind turbine group based on centralized converter[J]. Electrical equipment and economy, 2022(2): 24-28.
[8] 牛佳佳, 张立茹, 焦雪文, 等. 偏航工况下风力机叶片绕流流场特性的探究[J]. 太阳能学报, 2021, 42(4): 493-496.
NIU J J, ZHANG L R, JIAO X W, et al.Investigation on flow field characteristics of wind turbine blade under yaw condition[J]. Acta energiae solaris sinica, 2021, 42(4): 493-496.
[9] 缪维跑, 李春, 叶舟, 等. 水平轴风力机组尾迹偏移控制策略研究[J]. 太阳能学报, 2017, 38(1): 23-31.
MIAO W P, LI C, YE Z, et al.The control strategy of wake deviation for two horizontal-axis wind turbines[J]. Acta energiae solaris sinica, 2017, 38(1): 23-31.
[10] 东雪青, 刘钊, 汪建文, 等. 水平轴风力机尾迹流场掺混流动的实验研究[J]. 中国测试, 2017, 43(9): 24-28.
DONG X Q, LIU Z, WANG J W, et al.Experimental study on the blending flow of wake field of horizontal axis wind turbine[J]. China measurement & test, 2017, 43(9): 24-28.
[11] AMIN ALLAH V, SHAFIEI MAYAM M H. Large eddy simulation of flow around a single and two in-line horizontal-axis wind turbines[J]. Energy, 2017, 121: 533-544.
[12] 孙义鸣, 谭剑锋, 周天熠. 叶片旋转方向对NREL Phase Ⅵ风力机功率特性的影响分析[J]. 南京工业大学学报(自然科学版), 2019, 41(6): 695-702.
SUN Y M, TAN J F, ZHOU T Y.Effects analysis of blade rotation direction on power characteristics of NREL Phase Ⅵ wind turbine[J]. Journal of Nanjing Tech University(natural science edition), 2019, 41(6): 695-702.
[13] PARK J, LAW K H.Layout optimization for maximizing wind farm power production using sequential convex programming[J]. Applied energy, 2015, 151: 320-334.
基金
内蒙古自治区自然科学基金(2020MS05026); 内蒙古工业大学科学研究项目(BS2020033)