海上风电桩基础冲刷坑的存在对风电场安全运行造成不利影响,须采用有效的冲刷防护措施稳固桩周泥沙。该文以山东海域某海上风电场为研究对象,提出混凝土联锁排防护措施,并将其简化为六列矩形块阵列模型,通过数值模拟分析了矩形块阵列模型的水动力特性。研究发现,第1排矩形块为整个矩形阵列模型的主要受力块,混凝土联锁排整体阻力可通过单独计算第1排单个矩形块来评估,能显著减少计算量; 其次,矩形块阻力系数随时间变化具有周期性,但随时间变化幅度较小。总体而言,本文结果对指导混凝土连锁排防护设计具有一定的工程意义。
Abstract
The existence of scour holes around the foundations of offshore wind farms has a detrimental effect on the safe operation of wind turbines, and effective scour protection measures are crucial for stabilizing the sediment around the piles. Taking an offshore wind farm in a Shandong sea area as a research object, this paper proposes the concrete blocks interlocking row protection method which are simplified into a six-column rectangular blocks array model. Based on numerical simulation, the hydrodynamic characteristic of the model is analyzed. It is found that the first row of rectangular blocks is the main force zone of the entire rectangular array model, and the overall drag coefficient of concrete interlocking rows can be evaluated by calculating the first row of individual rectangular block separately, which can significantly reduce the calculation time. In addition, the drag coefficient of blocks changes periodically with flow time, but the amplitude of change with flow time is small.
关键词
海上风电 /
数值模拟 /
冲刷防护 /
水动力特性 /
混凝土联锁排
Key words
offshore wind turbines /
numerical simulation /
scour protection /
hydrodynamic characteristics /
concrete blocks interlocking rows
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭健, 王皓, 骆光杰, 等. 海上风机变径单桩基础水平承载特性数值分析[J]. 科学技术与工程, 2022, 22(9): 3658-3664.
GUO J, WANG H, LUO G J, et al.Numerical analysis of horizontal bearing capacity of variable diameter pile foundation for offshore wind turbine[J]. Science technology and engineering, 2022, 22(9): 3658-3664.
[2] DE VOS L, DE ROUCK J, TROCH P, et al.Empirical design of scour protections around monopile foundations. Part 2: dynamic approach[J]. Coastal engineering, 2012, 60: 286-298.
[3] 王亚康. 海上风电单桩基础采用抛石修复冲刷坑的施工实践[J]. 船舶工程, 2021, 43(增刊1): 66-70.
WANG Y K.Construction practice of repairing scour pit with riprap for offshore wind power monopile foundation[J]. Ship engineering, 2021, 43(S1): 66-70.
[4] 雷传, 范肖峰, 叶兆艺, 等. 海上风电场单桩基础防冲刷施工技术[J]. 水电与新能源, 2022, 36(2): 70-73.
LEI C, FAN X F, YE Z Y, et al.Anti-scouring construction technology of single pile foundation in offshore wind farm[J]. Hydropower and new energy, 2022, 36(2): 70-73.
[5] 和庆冬, 戚建功. 一种新技术在海上风机基础冲刷防护的应用研究[J]. 南方能源建设, 2020, 7(2): 112-121.
HE Q D, QI J G.A new technology research for scour protection of offshore wind turbine foundation[J]. Southern energy construction, 2020, 7(2): 112-121.
[6] 王卫, 王百智, 陈松贵, 等. 海上风电单桩胶结抛石体防冲刷措施模型试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1401-1407.
WANG W, WANG B Z, CHEN S G, et al.Model test investigation of offshore wind power monopile scour protection measures based on cemented riprap underwater[J]. Journal of Tsinghua University (science and technology), 2022, 62(9): 1401-1407.
[7] 杨武炳. 海上风电工程桩基防冲刷设计方案[J]. 能源与节能, 2022(3): 184-187.
YANG W B.Anti-scouring design scheme for pile foundation of offshore wind power projects[J]. Energy and energy conservation, 2022(3): 184-187.
[8] 魏凯, 王顺意, 裘放, 等. 海上风电单桩基础海流局部冲刷及防护试验研究[J]. 太阳能学报, 2021, 42(9): 338-343.
WEI K, WANG S Y, QIU F, et al.Experimental study on local scour and its protection of offshore wind turbine monopile under ocean current[J]. Acta energiae solaris sinica, 2021, 42(9): 338-343.
[9] 严莹. 系混凝土块土工格栅软体排在长江护岸工程中的开发应用研究[J]. 工程技术研究, 2016(8): 57-59.
YAN Y.Study on the development and application of concrete block geogrid soft raft in Yangtze River revetment project[J]. Engineering and technological research, 2016(8): 57-59.
[10] VERSTEEG H K, MALALASEKERA W.An introduction to computational fluid dynamics: the finite volume method[M]. 2nd ed. Harlow: Pearson Education Ltd., 2007.
[11] YAKHOT V, ORSZAG S A.Renormalization group analysis of turbulence. I. Basic theory[J]. Journal of scientific computing, 1986, 1(1): 3-51.
[12] 沈立龙, 刘明维, 吕启兵, 等. 双排并列三方柱绕流数值模拟[J]. 科学技术与工程, 2014, 14(23): 135-139, 163.
SHEN L L, LIU M W, LYU Q B.Numerical simulation of the flow around double-row tied for three square cylinders[J]. Science technology and engineering, 2014, 14(23): 135-139, 163.
[13] RODI W.Simulation of flow past buildings with statistical turbulence models[C]//Wind Climate in Cities. Dordrecht: Springer Netherlands, 1995: 649-668.
[14] LYN D A, EINAV S, RODI W, et al.A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder[J]. Journal of fluid mechanics, 1995, 304: 285-319.
[15] LYN D A, RODI W.The flapping shear layer formed by flow separation from the forward corner of a square cylinder[J]. Journal of fluid mechanics, 1994, 267: 353-376.
[16] 刘志江, 郭建廷, 孟小峰, 等. 基于CFD的方柱绕流水动力数值模拟[J]. 舰船科学技术, 2020, 42(17): 36-41.
LIU Z J, GUO J T, MENG X F, et al.Numerical simulation on hydrodynamic characteristics around rectangular cylinder based on CFD[J]. Ship science and technology, 2020, 42(17): 36-41.
[17] ZHONG F P, ZHOU C.Effects of tip gap size on the aerodynamic performance of a cavity-winglet tip in a turbine cascade[J]. Journal of turbomachinery, 2017, 139(10): 101009.
基金
华能集团总部科技项目“多维多源环境下海上风电场群规划优化和机组整体结构设计关键技术”(HNKJ20-H53); 北京市科技新星计划(20220484046); 海上风电场基础冲刷防护治理理论、措施及工程应用研究(HNKJ23-H18)