生物基材料应用于界面光热水蒸发系统的研究进展

马赛男, 闫卿, 汪倩倩, 李洲鹏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 30-41.

PDF(2598 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2598 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 30-41. DOI: 10.19912/j.0254-0096.tynxb.2022-1663

生物基材料应用于界面光热水蒸发系统的研究进展

  • 马赛男1,2, 闫卿3, 汪倩倩1,2, 李洲鹏2
作者信息 +

RESEARCH PROGRESS OF BIOMASS-BASED MATERIALS APPLIED TO INTERFACIAL SOLAR WATER EVAPORATION SYSTEM

  • Ma Sainan1,2, Yan Qing3, Wang Qianqian1,2, Li Zhoupeng2
Author information +
文章历史 +

摘要

太阳能驱动界面光热水蒸发技术是一种新型绿色节能的清洁水再生技术。光热转换材料作为关键组成部分,具有重要的研究意义。其中,生物基光热材料因其丰富性、生物可降解性、低导热性、天然独特的结构以及成本低廉等特点,引起广泛研究关注。旨在展望基于生物基材料的界面光热水蒸发技术发展趋势,该文首先介绍了界面光热水蒸发系统基本机制,根据材料来源详细综述了生物基光热材料的类型,对生物基界面光热水蒸发系统结构进行简要论述。最后,针对目前生物基界面光热水蒸发系统的研究现状进行总结并展望了未来几个重点研究方向。

Abstract

Solar-driven interfacial water evaporation is a novel, green and energy-saving freshwater regeneration technology. As a key component, photothermal conversion materials are of great research significance. Among them, biomass-based photothermal materials have piqued extensive attention due to their abundance, biodegradability, low thermal conductivity, naturally unique structures, and low cost. In order to foresee the development trend of biomass-based interfacial solar water evaporation, this paper started by elaborating on the basic mechanisms of the interfacial solar water evaporation system. The types of biomass-based photothermal materials were introduced according to their biological origins, and the structures of the biomass-based interfacial solar water evaporation system were discussed. Finally, the current research status of biomass-based interfacial solar water evaporation systems was summarized, and the future development trends were pointed out.

关键词

太阳能 / 生物质 / 蒸发 / 光热转换 / 水传输 / 海水淡化

Key words

solar energy / biomass / evaporation / photothermal conversion / water transportation / desalination

引用本文

导出引用
马赛男, 闫卿, 汪倩倩, 李洲鹏. 生物基材料应用于界面光热水蒸发系统的研究进展[J]. 太阳能学报. 2024, 45(2): 30-41 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1663
Ma Sainan, Yan Qing, Wang Qianqian, Li Zhoupeng. RESEARCH PROGRESS OF BIOMASS-BASED MATERIALS APPLIED TO INTERFACIAL SOLAR WATER EVAPORATION SYSTEM[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 30-41 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1663
中图分类号: TK519   

参考文献

[1] ZHAO F, GUO Y H, ZHOU X Y, et al.Materials for solar-powered water evaporation[J]. Nature reviews materials, 2020, 5: 388-401.
[2] 刘海舟, 喻小强, 李金磊,等. 基于等离激元微纳结构的太阳能界面光蒸汽转换[J]. 中国科学: 物理学力学天文学, 2019, 49(12): 124203.
LIU H Z,YU X Q,LI J L,et al.Plasmonic nanostructures for advanced interfacial solar vapor generation[J]. Scientia sinica physica, mechanica & astronomica, 2019, 49(12): 124203.
[3] ZHOU L, TAN Y L, WANG J Y, et al.3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature photonics, 2016, 10(6): 393-398.
[4] WANG H, ZHANG R J, YUAN D, et al.Gas foaming guided fabrication of 3D porous plasmonic nanoplatform with broadband absorption, tunable shape, excellent stability, and high photothermal efficiency for solar water purification[J]. Advanced functional materials, 2020, 30(46): 2003995.
[5] 陈清, 赵健, 程虎虎, 等. 石墨烯三维结构组装体制备及光热水蒸发和水处理研究进展[J]. 物理化学学报, 2022, 38(1): 2101020.
CHEN Q, ZHAO J, CHENG H H, et al.Progress in 3D-graphene assemblies preparation for solar-thermal steam generation and water treatment[J]. Acta physico-chimica sinica, 2022, 38(1): 2101020.
[6] CAO P, ZHAO L M, YANG Z P, et al.Carbon nanotube network-based solar-thermal water evaporator and thermoelectric module for electricity generation[J]. ACS applied nano materials, 2021, 4(9): 8906-8912.
[7] WANG Q, GUO Q J, JIA F F, et al.Facile preparation of three-dimensional MoS2 aerogels for highly efficient solar desalination[J]. ACS applied materials & interfaces, 2020, 12(29): 32673-32680.
[8] WANG T X, GAO S Y, WANG G, et al.Three-dimensional hierarchical oxygen vacancy-rich WO3-decorated Ni foam evaporator for high-efficiency solar-driven interfacial steam generation[J]. Journal of colloid and interface science, 2021, 602: 767-777.
[9] 苏丽芬, 常展鹏, 宁玉盈, 等. 柔性多孔硅橡胶负载纳米CuS的太阳能蒸发性能研究[J]. 材料导报, 2021, 35(18): 18024-18029.
SU L F,CHANG Z P,NING Y Y,et al.Flexible porous polydimethylsiloxane supported nano copper sulfide for efficient solar evaporation[J]. Materials reports, 2021, 35(18): 18024-18029.
[10] ZONG L, LI M J, LI C X.Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination[J]. Nano energy, 2018, 50: 308-315.
[11] WANG Z, YAN Y T, SHEN X P, et al.A wood-polypyrrole composite as a photothermal conversion device for solar evaporation enhancement[J]. Journal of materials chemistry A, 2019, 7(36): 20706-20712.
[12] LI Z Y, MA X, CHEN D K, et al.Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination[J]. Advanced science, 2021, 8(7): 2004552.
[13] WANG X, LIU Q C, WU S Y, et al.Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced materials, 2019, 31(19): 1807716.
[14] 薛超瑞, 李洋森, 黄蕊蕊, 等. BiOBr/Bi复合光热粉体的制备及其界面光热驱动水蒸发性能[J]. 复合材料学报, 2022, 39(7): 3271-3280
XUE C R, LI Y S, HUANG R R, et al.Preparation of BiOBr/Bi composite photothermal powder and its interfacial photothermal driven water evaporation performance[J]. Acta materiae compositae sinica, 2022, 39(7): 3271-3280.
[15] NI G, LI G, BORISKINA S V, et al.Steam generation under one sun enabled by a floating structure with thermal concentration[J]. Nature energy, 2016, 1(9): 16126.
[16] WANG Y C, ZHANG L B, WANG P.Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS sustainable chemistry & engineering, 2016, 4(3): 1223-1230.
[17] GHASEMI H, NI G, MARCONNET A M, et al.Solar steam generation by heat localization[J]. Nature communications, 2014, 5(1): 4449.
[18] ZHU M W, LI Y J, CHEN F J, et al.Plasmonic wood for high-efficiency solar steam generation[J]. Advanced energy materials, 2018, 8(4): 1701028.
[19] FU Y, WANG G, MING X, et al.Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon, 2018, 130: 250-256.
[20] LIU Z J, SONG H M, JI D X, et al.Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global challenges, 2017, 1(2): 1600003.
[21] CHEN M L, WU Y F, SONG W X, et al.Plasmonic nanoparticle-embedded poly(p-phenylene benzobisoxazole) nanofibrous composite films for solar steam generation[J]. Nanoscale, 2018, 10(13): 6186-6193.
[22] YE M M, JIA J, WU Z J, et al.Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation[J]. Advanced energy materials, 2017, 7(4): 1601811.
[23] WANG H Q, ZHANG C, ZHANG Z H, et al.Artificial trees inspired by monstera for highly efficient solar steam generation in both normal and weak light environments[J]. Advanced functional materials, 2020, 30(48): 2005513.
[24] PLOMION C, LEPROVOST G G, STOKES A.Wood formation in trees[J]. Plant physiology, 2001, 127(4): 1513-1523.
[25] JIANG F, LI T, LI Y J, et al.Wood-based nanotechnologies toward sustainability[J]. Advanced materials, 2018, 30(1): 1703453.
[26] XUE G B, LIU K, CHEN Q, et al.Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS applied materials & interfaces, 2017, 9(17): 15052-15057.
[27] KUANG Y D, CHEN C J, HE S M, et al.A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced materials, 2019, 31(23): 1900498.
[28] LI W Z, LI F, ZHANG D, et al.Porous wood-carbonized solar steam evaporator[J]. Wood science and technology, 2021, 55(3): 625-637.
[29] WU D X, GAO Y Z, DAI Z F, et al.Alkali treatment combined with surface carbonized wood for high-efficiency solar interfacial evaporation[J]. Applied thermal engineering, 2022: 118646.
[30] GHAFURIAN M M, NIAZMAND H, EBRAHIMNIA-BAJESTAN E, et al.Wood surface treatment techniques for enhanced solar steam generation[J]. Renewable energy, 2020, 146: 2308-2315.
[31] HUANG L B, LING L, SU J J, et al.Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation[J]. ACS applied materials & interfaces, 2020, 12(46): 51864-51872.
[32] JIA C, LI Y J, YANG Z, et al.Rich mesostructures derived from natural woods for solar steam generation[J]. Joule, 2017, 1(3): 588-599.
[33] XIAO X, CHEN B L, CHEN Z M, et al.Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review[J]. Environmental science & technology, 2018, 52(9): 5027-5047.
[34] GHAFURIAN M M, NIAZMAND H, GOHARSHADI E K, et al.Enhanced solar desalination by delignified wood coated with bimetallic Fe/Pd nanoparticles[J]. Desalination, 2020, 493: 114657.
[35] GUO D F, YANG X C.Highly efficient solar steam generation of low cost TiN/bio-carbon[J]. Science china materials, 2019, 62(5): 711-718.
[36] LIU H W, CHEN C J, WEN H, et al.Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification[J]. Journal of materials chemistry A, 2018, 6(39): 18839-18846.
[37] CHEN C J, LI Y J, SONG J W, et al.Highly flexible and efficient solar steam generation device[J]. Advanced materials, 2017, 29(30): 1701756.
[38] LI T, LIU H, ZHAO X P, et al.Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced functional materials, 2018, 28(16): 1707134.
[39] LIU K K, JIANG Q S, TADEPALLI S, et al.Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J]. ACS applied materials & interfaces, 2017, 9(8): 7675-7681.
[40] WANG Z, YAN Y T, SHEN X P, et al.Candle soot nanoparticle-decorated wood for efficient solar vapor generation[J]. Sustainable energy & fuels, 2020, 4(1): 354-361.
[41] WU X, CHEN G Y, ZHANG W, et al.A plant-transpiration-process-inspired strategy for highly efficient solar evaporation[J]. Advanced sustainable systems, 2017, 1(6): 1700046.
[42] ZOU Y, YANG P, YANG L, et al.Boosting solar steam generation by photothermal enhanced polydopamine/wood composites[J]. Polymer, 2021, 217: 123464.
[43] LIN Z X, WU T T, JIA B X, et al.Nature-inspired poly(N-phenylglycine)/wood solar evaporation system for high-efficiency desalination and water purification[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2022, 637: 128272.
[44] LU Y, FAN D Q, SHEN Z Y, et al.Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions[J]. Nano energy, 2022, 95: 107016.
[45] SONG L, ZHANG X-F, WANG Z G, et al.Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation[J]. Desalination, 2021, 507: 115024.
[46] XU N, HU X Z, XU W C, et al.Mushrooms as efficient solar steam-generation devices[J]. Advanced materials, 2017, 29(28): 1606762.
[47] SUN P, ZHANG W, ZADA I, et al.3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(2): 2171-2179.
[48] BIAN Y, SHEN Y, TANG K, et al.Carbonized tree-like furry magnolia fruit-based evaporator replicating the feat of plant transpiration[J]. Global challenges, 2019, 3(10): 1900040.
[49] LIU C, HONG K, SUN X, et al.An ‘antifouling’ porous loofah sponge with internal microchannels as solar absorbers and water pumpers for thermal desalination[J]. Journal of materials chemistry A, 2020, 8(25): 12323-12333.
[50] 吴琳, 王军, 范奇, 等. 基于生物质碳的界面光热蒸发实验研究[J]. 太阳能学报, 2022, 43(11): 106-111.
WU L, WANG J, FAN Q, et al.Experimental study on interfacial photothermal evaporation based on biomass carbon[J]. Acta energiae solaris sinica, 2022, 43(11): 106-111.
[51] SUN Y, ZHAO Z B, ZHAO G Y, et al.High performance carbonized corncob-based 3D solar vapor steam generator enhanced by environmental energy[J]. Carbon, 2021, 179: 337-347.
[52] 解晓明, 索习东, 王璐瑶, 等. 玉米芯生物炭饼的太阳能水蒸发性能及其应用[J]. 农业工程学报, 2022, 38(10): 286-295.
XIE X M, SUO X D, WANG L Y, et al.Solar steam generation performance of corncob biochar cake and its application in water treatment[J]. Transactions of the CSAE, 2022, 38(10): 286-295.
[53] LIU X H, MISHRA D D, LI Y K, et al.Biomass-derived carbonaceous materials with multichannel waterways for solar-driven clean water and thermoelectric power generation[J]. ACS sustainable chemistry & engineering, 2021, 9(12): 4571-4582.
[54] GUAN H S, FAN T T, BAI H Y, et al.A waste biomass-derived photothermic material with high salt-resistance for efficient solar evaporation[J]. Carbon, 2022, 188: 265-275.
[55] WILSON H M, AHIRRAO D J, RAHEMAN A S, et al.Biomass-derived porous carbon for excellent low intensity solar steam generation and seawater desalination[J]. Solar energy materials and solar cells, 2020, 215: 110604.
[56] ZHU M M, YU J L, MA C L, et al.Carbonized daikon for high efficient solar steam generation[J]. Solar energy materials and solar cells, 2019, 191: 83-90.
[57] WANG C B, WANG J L, LI Z T, et al.Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J]. Journal of materials chemistry A, 2020, 8(19): 9528-9535.
[58] PHAM T T, NGUYEN T H, NGUYEN T A H, et al. Durable, scalable and affordable iron (III) based coconut husk photothermal material for highly efficient solar steam generation[J]. Desalination, 2021, 518: 115280.
[59] LONG Y J, HUANG S L, YI H, et al.Carrot-inspired solar thermal evaporator[J]. Journal of materials chemistry A, 2019, 7(47): 26911-26916.
[60] WANG Q Y, QIU L Y, JIA Y, et al.Design of carbon loaded porous TiO2 foams by the hydrothermal-assisted annealing carbonization of fruit residue for solar-driven water evaporation[J]. Solar energy materials and solar cells, 2019, 202: 110116.
[61] ZHU R F, WANG D, ZHANG J C, et al.Biomass eggplant-derived photothermal aerogels with Janus wettability for cost-effective seawater desalination[J]. Desalination, 2022, 527: 115585.
[62] KONG Y, GAO Y, GAO B Y, et al.Tubular polypyrrole enhanced elastomeric biomass foam as a portable interfacial evaporator for efficient self-desalination[J]. Chemical engineering journal, 2022, 445: 136701.
[63] DENG J Y, XIAO S N, WANG B, et al.Self-suspended photothermal microreactor for water desalination and integrated volatile organic compound removal[J]. ACS applied materials & interfaces, 2020, 12(46): 51537-51545.
[64] FANG J, LIU J, GU J J, et al.Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chemistry of materials, 2018, 30(18): 6217-6221.
[65] YUAN B H, ZHANG C F, LIANG Y, et al.A low-cost 3D spherical evaporator with unique surface topology and inner structure for solar water evaporation-sssisted dye wastewater treatment[J]. Advanced sustainable systems, 2021, 5(3): 2000245.
[66] WANG H Q, ZHANG C, ZHOU B, et al.Ultra-black pinecone for efficient solar steam generation under omnidirectional illumination[J]. Advanced sustainable systems, 2021, 5(2): 2000244.
[67] LIU J, YAO J H, YUAN Y, et al.Surface-carbonized bamboos with multilevel functional biostructures deliver high photothermal water evaporation performance[J]. Advanced sustainable systems, 2020, 4(9): 2000126.
[68] SHENG C M, YANG N, YAN Y T, et al.Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation[J]. Applied thermal engineering, 2020, 167: 114712.
[69] BIAN Y, DU Q Q, TANG K, et al.Carbonized bamboos as excellent 3D solar vapor-generation devices[J]. Advanced materials technologies, 2019, 4(4): 1800593.
[70] LI Z T, WANG C B, LEI T, et al.Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity[J]. Advanced sustainable systems, 2019, 3(4): 1800144.
[71] GONG B Y, YANG H C, WU S H, et al.Multifunctional solar bamboo straw: multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage[J]. Carbon, 2021, 171: 359-367.
[72] ZHANG H T, LI L, JIANG B, et al.Highly thermally insulated and superhydrophilic corn straw for efficient solar vapor generation[J]. ACS applied materials & interfaces, 2020, 12(14): 16503-16511.
[73] SUN Z Z, LI W Z, SONG W L, et al.A high-efficiency solar desalination evaporator composite of corn stalk, MCNTs and TiO2: ultra-fast capillary water moisture transportation and porous bio-tissue multi-layer filtration[J]. Journal of materials chemistry A, 2020, 8(1): 349-357.
[74] LI J Y, ZHOU X, MU P, et al.Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators[J]. ACS applied materials & interfaces, 2020, 12(1): 798-806.
[75] LIU J, LIU Q L, MA D L, et al.Simultaneously achieving thermal insulation and rapid water transport in sugarcane stems for efficient solar steam generation[J]. Journal of materials chemistry A, 2019, 7(15): 9034-9039.
[76] 杨沁谕, 张少春, 李海成, 等. 甘蔗基碳材料制备及光热蒸发研究[J]. 黑龙江大学工程学报, 2021, 12(2): 39-45.
YANG Q Y,ZHANG S C,LI H C,et al.Preparation of sugarcane-based carbon materials and the study of photothermal evaporation[J]. Journal of Heilongjiang Hydraulic Engineering College, 2021, 12(2): 39-45
[77] ZHANG Q, REN L P, XIAO X F, et al.Vertically aligned Juncus effusus fibril composites for omnidirectional solar evaporation[J]. Carbon, 2020, 156: 225-233.
[78] FANG Q L, LI T T, CHEN Z M, et al.Full biomass-derived solar stills for robust and stable evaporation to collect clean water from various water-bearing media[J]. ACS applied materials & interfaces, 2019, 11(11): 10672-10679.
[79] ZHANG Z, FENG Z, QI H, et al.Carbonized sorghum straw derived 3D cup-shaped evaporator with enhanced evaporation rate and energy efficiency[J]. Sustainable materials and technologies, 2022, 32: e00414.
[80] LIU J H, XU L Q, LI Y C, et al.Construction of novel biomass-based solar evaporator with asymmetric dual-layer structure for water desalination[J]. Advanced sustainable systems, 2022, 6(1): 2100274.
[81] LIU F Q X, XIA L M, ZHANG L Y, et al. Sunflower-stalk-based solar-driven evaporator with a confined 2D water channel and an enclosed thermal-insulating cellular structure for stable and efficient steam generation[J]. ACS applied materials & interfaces, 2021, 13(46): 55299-55306.
[82] LIAO Y L, CHEN J H, ZHANG D N, et al.Lotus leaf as solar water evaporation devices[J]. Materials letters, 2019, 240: 92-95.
[83] LI Z T, WANG C B, LI Z Y, et al.Efficient interfacial solar steam generator with controlled macromorphology derived from flour via “dough figurine” technology[J]. Energy technology, 2019, 7(9): 1980344.
[84] FANG W, ZHAO L, HE X, et al.Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation[J]. Renewable energy, 2020, 151: 1067-1075.
[85] ZHANG C F, YUAN B H, LIANG Y, et al.Solar vapor generator: A natural all-in-one 3D system derived from cattail[J]. Solar energy materials and solar cells, 2021, 227: 111127.
[86] YANG L, CHEN G L, ZHANG N, et al.Sustainable biochar-based solar absorbers for high-performance solar-driven steam generation and water purification[J]. ACS sustainable chemistry & engineering, 2019, 7(23): 19311-19320.
[87] LI J Y, ZHOU X, ZHANG J Y, et al.Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS applied energy materials, 2020, 3(3): 3024-3032.
[88] ZHU M M, XIA A D, FENG Q Q, et al.Biomass carbon materials for efficient solar steam seneration prepared from carbonized enteromorpha prolifera[J]. Energy technology, 2020, 8(5): 1901215.
[89] TIAN Y P, LIU X J, XU S L, et al.Recyclable and efficient ocean biomass-derived hydrogel photothermal evaporator for thermally-localized solar desalination[J]. Desalination, 2022, 523: 115449.
[90] LIU X J, TIAN Y P, WU Y Z, et al.Seawater desalination derived entirely from ocean biomass[J]. Journal of materials chemistry A, 2021, 9(39): 22313-22324.
[91] ZHANG S C, ZANG L L, DOU T W, et al.Willow catkins-derived porous carbon membrane with hydrophilic property for efficient solar steam generation[J]. ACS omega, 2020, 5(6): 2878-2885.
[92] KHAJEVAND M, AZIZIAN S, BOUKHERROUB R.Naturally abundant green moss for highly efficient solar thermal generation of clean water[J]. ACS applied materials & interfaces, 2021, 13(27): 31680-31690.
[93] ZAFAR MS, ZAHID M, ATHANASSIOU A, et al.Biowaste-derived carbonized bone for solar steam generation and seawater desalination[J]. Advanced sustainable systems, 2021, 5(8): 2100031.
[94] SHAN X L, XIONG M Y, SHENG Y H, et al.Concentrated acid-induced dehydration of fallen leaves for efficient, sustainable, and self-cleaning solar steam generation[J]. Advanced energy and sustainability research, 2020, 1(2): 2000034.
[95] CHEN Z J, DANG B, LUO X F, et al.Deep eutectic solvent-assisted in situ wood delignification: a promising strategy to enhance the efficiency of wood-based solar steam generation devices[J]. ACS applied materials & interfaces, 2019, 11(29): 26032-26037.

基金

浙江省自然科学基金(LQ21E020009); 国家自然科学基金(21978261)

PDF(2598 KB)

Accesses

Citation

Detail

段落导航
相关文章

/