考虑大变形的柔性风电叶片气弹性分析

王泽栋, 王靛, 漆良文, 陈严, 黄志鸿

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 143-151.

PDF(1947 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1947 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 143-151. DOI: 10.19912/j.0254-0096.tynxb.2022-1667

考虑大变形的柔性风电叶片气弹性分析

  • 王泽栋1, 王靛1, 漆良文2, 陈严3, 黄志鸿3
作者信息 +

DYNAMIC RESPONSE OF FLEXIBLE WIND TURBINE BLADES CONSIDERING LARGE-DEFLECTION

  • Wang Zedong1, Wang Dian1, Qi Liangwen2, Chen Yan3, Huang Zhihong3
Author information +
文章历史 +

摘要

针对超长柔性风电叶片在传统线性(小变形)条件下发生动力学分析失效的问题,提出考虑大变形结构的柔性叶片模型并进行气动弹性分析。首先将叶片简化成非均匀悬臂梁,利用大变形Euler-Bernoulli梁模型进行离散化建模;后结合叶素动量理论,建立叶片的非线性结构动力学方程,并运用Newton-Raphson和逐步积分相结合的方式进行时域仿真。整个过程重点考虑大变形结构的刚度变化、以及柔性叶片截面扭转运动和外形变化。以DTU 10 MW风力机为算例,比较叶片在大变形和小变形结构下的动态气动特性,结果表明:动态响应中,大变形结构的刚度变化导致挥舞方向的叶尖位移明显增加,略微减小摆振方向的位移,同时叶尖扭角也会显著减小。此外,叶根面外载荷在大变形条件下会显著下降,但叶根面内载荷则会略微增加。这与传统线性条件下的气弹现象具有明显差异。该文的叶片模型能有效预测长柔叶片的动态气动特性。

Abstract

Aiming at the problem of dynamic analysis failure of ultra-long flexible wind turbine blades under traditional linear (small deformation) conditions, a flexible blade model with the large-deflection structure is developed to study the dynamic response. The blade is simplified as a cantilever and discretely modeled by applying the large-deflection model which is derived from the Euler-Bernoulli beam. Then, the nonlinear aeroelastic dynamics equations of the blade model are established by using blade element momentum (BEM) theory, and time-domain simulations are performed by using the nonlinear Newmark method and Newton-Raphson method. The changes of the structural stiffness and the pose of the blade are considered throughout the process. Finally, the nonlinear model is applied to the DTU 10 MW wind turbine. The results show that the large-deflection model significantly increases the flapwise deflection and torsion angle of the blade tip in dynamic response, while slightly reduce the edgewise deflection. Meawhile, the large-deflection model significantly reduces the flapwise load of the blade root in dynamic response, while slightly increase the edgewise load of the blade root, which is different from the result of the linear model.

关键词

风力机 / 柔性叶片 / 大变形结构 / 气动弹性 / 截面扭转

Key words

wind turbines / flexible blade / large-deflection / aeroelasticity / cross-section twist

引用本文

导出引用
王泽栋, 王靛, 漆良文, 陈严, 黄志鸿. 考虑大变形的柔性风电叶片气弹性分析[J]. 太阳能学报. 2024, 45(2): 143-151 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1667
Wang Zedong, Wang Dian, Qi Liangwen, Chen Yan, Huang Zhihong. DYNAMIC RESPONSE OF FLEXIBLE WIND TURBINE BLADES CONSIDERING LARGE-DEFLECTION[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 143-151 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1667
中图分类号: TK83   

参考文献

[1] JOSELIN HERBERT G M, INIYAN S, SREEVALSAN E, et al. A review of wind energy technologies[J]. Renewable and sustainable energy reviews, 2007, 11(6): 1117-1145.
[2] LEUNG D Y C, YANG Y. Wind energy development and its environmental impact: a review[J]. Renewable and sustainable energy reviews, 2012, 16(1): 1031-1039.
[3] VEERS P, DYKES K, LANTZ E, et al. Grand challenges in the science of wind energy[J]. Science, 2019, 366(6464): eaau2027.
[4] KALLESØE B S. Equations of motion for a rotor blade, including gravity, pitch action and rotor speed variations[J]. Wind energy, 2007, 10(3): 209-230.
[5] HODGES D H.Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[R]. NASA TN D-7818, 1974.
[6] MANOLAS D I, RIZIOTIS V A, VOUTSINAS S G.Assessing the importance of geometric nonlinear effects in the prediction of wind turbine blade loads[J]. Journal of computational and nonlinear dynamics, 2015, 10(4): 041008.
[7] 陈严, 方郁锋, 刘雄, 等. 考虑风力机叶片截面扭转运动及外形变化的气动弹性分析[J]. 太阳能学报, 2014, 35(4): 553-561.
CHEN Y, FANG Y F, LIU X, et al.Aeroelastic analysis on section twist and shape change of wind turbine blade[J]. Acta energiae solaris sinica, 2014, 35(4): 553-561.
[8] 张新榃, 杨超, 吴志刚. 基于大变形梁模型的风力机叶片气动弹性分析[J]. 北京航空航天大学学报, 2014, 40(3): 327-332.
ZHANG X T, YANG C, WU Z G.Aeroelastic analysis method for wind turbine blade based on large deformation beam model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3): 327-332.
[9] 曹九发, 王同光, 王枭. 大型风力机的几何非线性动态响应研究[J]. 振动与冲击, 2016, 35(14): 182-187, 214.
CAO J F, WANG T G, WANG X.Geometric nonlinear dynamics response of large-scale wind turbine[J]. Journal of vibration and shock, 2016, 35(14): 182-187, 214.
[10] 付志超, 陈占军, 刘子强. 大展弦比机翼气动弹性的几何非线性效应[J]. 工程力学, 2017, 34(4): 231-240.
FU Z C, CHEN Z J, LIU Z Q.Geometric nonlinear aeroelastic behavior of high aspect ratio wings[J]. Engineering mechanics, 2017, 34(4): 231-240.
[11] 陈严, 张林伟, 刘雄, 等. 水平轴风力机柔性叶片气动弹性响应分析[J]. 太阳能学报, 2014, 35(1): 74-82.
CHEN Y, ZHANG L W, LIU X, et al.Response analysis of aeroelasticity for hawt flexible blade[J]. Acta energiae solaris sinica, 2014, 35(1): 74-82.
[12] 夏拥军, 缪谦. Euler-Bernoulli梁单元的完整二阶位移场[J]. 中国工程机械学报, 2011, 9(4): 416-420.
XIA Y J, MIAO Q.Complete second-order displacement field of Euler-Bernoulli beam element[J]. Chinese journal of construction machinery, 2011, 9(4): 416-420.
[13] GALVANETTO U, CRISFIELD M A.An energy-conserving co-rotational procedure for the dynamics of planar beam structures[J]. International journal for numerical methods in engineering, 1996, 39(13): 2265-2282.
[14] CLOUGH R W, PENZIEN J.Dynamics of structures[M]. 2nd ed. New York: McGraw-Hill, 1993.
[15] IEC 61400-1:2019, Wind energy generation systems—part 1: design requirements.
[16] 陈至达. 杆、板、壳大变形理论[M]. 北京: 科学出版社, 1994.
CHEN Z D.Large deformation theory of rod, plate and shell[M]. Beijing: Science Press, 1994.
[17] BAK C, ZAHLE F, BITSCHE R D, et al.The DTU 10-MW reference wind turbine[C]//Danish Wind Power Research 2013. Trinity, Fredericia, Denmark, 2013.

基金

国家自然科学基金(51976113)

PDF(1947 KB)

Accesses

Citation

Detail

段落导航
相关文章

/