针对现有的风电轴承健康状态评估方法需大量样本提取和模型训练、存在实现过程繁琐费时费力且泛化应用能力弱的问题,提出基于动态阈值的风电轴承健康状态评估方法。首先,考虑风的随机性和间歇性,利用风电轴承温度监测数据,引入劣化度概念,采用曲线拟合和机群聚类方法确定了劣化度的上、下限动态阈值;其次,通过健康状态评语集及其等级划分范围和劣化度计算,提出基于动态阈值的风电轴承健康状态评估方法;最后,以某风电机组的发电机后轴承超温故障为例,验证了所提评估方法可获得有效的风电轴承健康状态和及早获知故障征兆。
Abstract
To address the challenges faced by current wind turbine bearing health assessment methods, which involve extensive sample extraction, model training, and are therefore cumbersome, time-intensive, and labor-intensive with limited applicability, a method utilizing a dynamic threshold for assessing the health status of wind turbine bearings is introduced. Firstly, considering the randomness and intermittency of wind, the concept of deterioration degree is introduced by using the temperature monitoring data of wind turbine bearings, and the upper and lower dynamic thresholds of deterioration degree are determined by curve fitting and cluster clustering methods. Secondly, the health condition evaluation method of wind turbine bearings based on dynamic threshold is proposed by calculating the health status comment set and its grade division range and deterioration degree. Finally, taking the overtemperature fault of the rear bearing of a wind turbine as an example, it is verified that the proposed evaluation method can obtain the effective health conditions of the wind turbine bearing and obtain the fault symptom as soon as possible.
关键词
风力机 /
轴承 /
劣化度 /
状态评估 /
动态阈值 /
健康管理
Key words
wind turbines /
bearing /
deterioration /
condition evaluation /
dynamic threshold /
health management
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 金晓航, 孙毅, 单继宏, 等. 风力发电机组故障诊断与预测技术研究综述[J]. 仪器仪表学报, 2017, 38(5): 1041-1053.
JIN X H, SUN Y, SHAN J H, et al.Fault diagnosis and prognosis for wind turbines: an overview[J]. Chinese journal of scientific instrument, 2017, 38(5): 1041-1053.
[2] 胡姚刚, 李辉, 廖兴林, 等. 风电轴承性能退化建模及其实时剩余寿命预测[J]. 中国电机工程学报, 2016, 36(6): 1643-1649.
HU Y G, LI H, LIAO X L, et al.Performance degradation model and prediction method of real-time remaining life for wind turbine bearings[J]. Proceedings of the CSEE, 2016, 36(6): 1643-1649.
[3] 赵杰, 陈志刚, 赵志川, 等. 基于同步提取变换和DRSN的滚动轴承故障诊断研究[J]. 重庆理工大学学报(自然科学), 2021, 35(1): 138-144.
ZHAO J, CHEN Z G, ZHAO Z C, et al.Fault diagnosis of rolling bearing based on SET and DRSN[J]. Journal of Chongqing University of Technology (natural science), 2021, 35(1): 138-144.
[4] SAIDI L, BEN ALI J, BECHHOEFER E, et al.Wind turbine high-speed shaft bearings health prognosis through a spectral Kurtosis-derived indices and SVR[J]. Applied acoustics, 2017, 120: 1-8.
[5] 宋威, 林建维, 周方泽, 等. 基于改进降噪自编码器的风机轴承故障诊断方法[J]. 电力系统保护与控制, 2022, 50(10): 61-68.
SONG W, LIN J W, ZHOU F Z, et al.Wind turbine bearing fault diagnosis method based on an improved denoising Autoencoder[J]. Power system protection and control, 2022, 50(10): 61-68.
[6] YU J B.Health condition monitoring of machines based on hidden Markov model and contribution analysis[J]. IEEE transactions on instrumentation and measurement, 2012, 61(8): 2200-2211.
[7] 张拓, 余何, 何爱民, 等. 基于混合特征与PSO-SVM的旋转部件故障诊断方法[J]. 重庆理工大学学报(自然科学), 2022, 36(8): 117-124.
ZHANG T, YU H, HE A M, et al.Rotating parts fault diagnosis method considering mixed feature and PSO-SVM[J]. Journal of Chongqing University of Technology (natural science), 2022, 36(8): 117-124.
[8] 李振恩, 张新燕, 胡威, 等. 基于健康指数的风电机组高速轴轴承状态评估与预测[J]. 太阳能学报, 2021, 42(10): 290-297.
LI Z N, ZHANG X Y, HU W, et al.State accessment and prediction of wind turbine high speed shaft bearing based on health index[J]. Acta energiae solaris sinica, 2021, 42(10): 290-297.
[9] 魏乐, 胡晓东, 尹诗. 基于优化XGBoost的风电机组发电机前轴承故障预警[J]. 系统仿真学报, 2021, 33(10): 2335-2343.
WEI L, HU X D, YIN S.Optimized-XGBoost early warning of wind turbine generator front bearing fault[J]. Journal of system simulation, 2021, 33(10): 2335-2343.
[10] 赵洪山, 刘辉海. 基于深度学习网络的风电机组主轴承故障检测[J]. 太阳能学报, 2018, 39(3): 588-595.
ZHAO H S, LIU H H.Fault detection of wind turbine main bear based on deep learning network[J]. Acta energiae solaris sinica, 2018, 39(3): 588-595.
[11] 张超, 张少飞. 基于SCADA温度数据的风电机组发电机驱动端轴承异常识别方法[J]. 轴承, 2022(6): 67-73.
ZHANG C, ZHANG S F.Anomaly recognition method for drive end bearings of wind turbine generator based on SCADA temperature data[J]. Bearing, 2022(6): 67-73.
[12] 尹诗, 侯国莲, 胡晓东, 等. 基于AC-GAN数据重构的风电机组主轴承温度监测方法[J]. 智能系统学报, 2021, 16(6): 1106-1116.
YIN S, HOU G L, HU X D, et al.Temperature monitoring method of the main bearing of wind turbine based on AC-GAN data reconstruction[J]. CAAI transactions on intelligent systems, 2021, 16(6): 1106-1116.
[13] 苏连成, 邢美玲, 张慧. 基于组合预测模型的风电机组关键部位故障检测[J]. 太阳能学报, 2021, 42(10): 220-225.
SU L C, XING M L, ZHANG H.Fault detection of key components of wind turbine based on combination prediction model[J]. Acta energiae solaris sinica, 2021, 42(10): 220-225.
[14] HU Y G, LI H, LIAO X L, et al. A probability evaluation method of early deterioration condition for the critical components of wind turbine generator systems[J]. Mechanical systems and signal processing, 2016, 76/77: 729-741.
[15] 杨茂, 代博祉. 基于比恩法的风电场风速-功率曲线建模误差分析[J]. 电力自动化设备, 2020, 40(12): 81-89.
YANG M, DAI B Z.Modeling error analysis of wind speed-wind power curve for wind farm based on Bins method[J]. Electric power automation equipment, 2020, 40(12): 81-89.
[16] 刘文婧, 赵鹏飞, 张文兴, 等. 基于流形半监督K均值算法的风力发电机故障诊断方法[J]. 机床与液压, 2020, 48(17): 191-194.
LIU W J, ZHAO P F, ZHANG W X, et al.Fault diagnosis method of wind turbine based on manifold semi-supervised K-means algorithm[J]. Machine tool & hydraulics, 2020, 48(17): 191-194.
基金
国家电力投资集团有限公司统筹研发资助项目(TC2020FD05)