基于WRF模式的四川省凉山州地区风能资源可开发区域研究

叶瑶, 袁熹, 王逸奇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 158-163.

PDF(2387 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2387 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 158-163. DOI: 10.19912/j.0254-0096.tynxb.2022-1676

基于WRF模式的四川省凉山州地区风能资源可开发区域研究

  • 叶瑶1, 袁熹2, 王逸奇3
作者信息 +

STUDY ON DEVELOPABLE REGIONS OF WIND ENERGY RESOURCES IN LIANGSHAN PREFECTURE, SICHUAN PROVINCE BASED ON WRF MODEL

  • Ye Yao1, Yuan Xi2, Wang Yiqi3
Author information +
文章历史 +

摘要

利用MERRA2再分析数据驱动WRF模式,对四川凉山州地区2020年全年进行风资源模拟分析,并用凉山州地区典型测风塔数据对模拟结果进行检验,并进行详细地风资源分析,再根据风电场开发8%基准内部收益率反推可开发风能资源的区域分布。结果表明:凉山州大部分地区100 m高度年平均风速在5 m/s以上,风速极大值一般位于山脊,凉山州风能最好的区域主要集中在会东县和宁南县。凉山州典型区域内均表现出受西南季风影响的特征,即冬、春季节风大,夏、秋季节风小,主风向呈强西南风状态,且风功率密度变化规律与风速的变化规律基本一致。凉山州山地区域可开发风能资源的平均风功率密度临界值为258 W/m2,这些区域主要集中在会理、会东、宁南、布拖、木里和盐源县境内。可开发区域分布图对指导凉山州地区风能开发提供科学参考。

Abstract

In this paper, the WRF model driven by MERRA2 reanalysis data was used to simulate and analyze the wind resources in Liangshan Prefecture, Sichuan Province in 2020, and the simulation results were tested with the data of typical wind measuring towers in Liangshan Prefecture. Then, the regional distribution of exploitable wind energy resources were deduced backward based on the 8% benchmark revenue return of wind farm development. The results show that the annual average wind speed is above 5 m/s at 100 m height in most areas of Liangshan, and the maximum wind speed area is generally located in the ridge. The best wind energy areas in Liangshan are mainly located in Huidong County and Ningnan County. Typical regions in Liangshan Prefecture are affected by the southwest monsoon, that is, the wind is strong in winter and spring, but weak in summer and autumn. The main wind direction presents a strong southwest wind state, and the change law of wind power density is basically consistent with the change of wind speed. The critical value of the average wind power density of exploitable wind energy resources in mountainous areas of Liangshan Prefecture is 258 W/m2, and these areas are mainly concentrated in Huili, Huidong, Ningnan, Butuo, Muli and Yanyuan County. The distribution map of exploitable area provides scientific reference for guiding the development of wind energy in Liangshan Prefecture.

关键词

风速 / 风功率密度 / 内部收益率 / WRF模式 / 凉山州

Key words

wind speed / wind power density / internal rate of return / WRF model / Liangshan Prefecture

引用本文

导出引用
叶瑶, 袁熹, 王逸奇. 基于WRF模式的四川省凉山州地区风能资源可开发区域研究[J]. 太阳能学报. 2024, 45(2): 158-163 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1676
Ye Yao, Yuan Xi, Wang Yiqi. STUDY ON DEVELOPABLE REGIONS OF WIND ENERGY RESOURCES IN LIANGSHAN PREFECTURE, SICHUAN PROVINCE BASED ON WRF MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 158-163 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1676
中图分类号: TK81   

参考文献

[1] 熊燕琳. 四川风能太阳能资源分布及气象影响因素研究[D]. 成都: 成都信息工程大学, 2019.
XIONG Y L.Study on distribution of wind energy and solar energy resources and meteorological influencing factors in Sichuan[D]. Chengdu: Chengdu University of Information Technology, 2019.
[2] 李少彦. 我国碳中和时的非化石能源占比与风电、光伏发电装机容量分析[J]. 风能, 2021(11): 96-98.
LI S Y.Analysis on the proportion of non-fossil energy and the installed capacity of wind power and photovoltaic power generation in China during carbon neutrality[J]. Wind energy, 2021(11): 96-98.
[3] 李柯, 何凡能. 中国陆地太阳能资源开发潜力区域分析[J]. 地理科学进展, 2010, 29(9): 1049-1054.
LI K, HE F N.Analysis on China’s mainland’s solar energy distribution and potential to utilize solar energy as an alternative energy source[J]. Progress in geography, 2010, 29(9): 1049-1054.
[4] 冯泽深, 赵增海, 郭雁珩, 等. 2021年中国风电发展现状与展望[J]. 水力发电, 2022, 48(10): 1-3, 8.
FENG Z S, ZHAO Z H, GUO Y H, et al.Status and prospect of China’s wind power development in 2021[J]. Water power, 2022, 48(10): 1-3, 8.
[5] 乔建勇, 熊丙祥. 四川能源系统的现状与特征[J]. 资源开发与市场, 2005, 21(1): 38-39.
QIAO J Y, XIONG B X.Basic current situation and characteristics of Sichuan energy system[J]. Resource development & market, 2005, 21(1): 38-39.
[6] 李梓嘉, 刘岩, 周云, 等. 对新形势下四川省水能、风能及太阳能开发的思考[J]. 水电站设计, 2017, 33(3): 80-83, 87.
LI Z J, LIU Y, ZHOU Y, et al.Thoughts on the development of hydropower, wind energy and solar energy in Sichuan Province under the new situation[J]. Design of hydroelectric power station, 2017, 33(3): 80-83, 87.
[7] 任律, 李丽平. 国家自然科学基金委员会地球科学部南京信息工程大学大气资料服务中心资料通讯[J]. 大气科学学报, 2010, 33(2): 253-256.
REN L, LI L P.Data communication of atmospheric data service center of Nanjing University of Information Science and Technology, Department of Earth Sciences, National Natural Science Foundation of China[J]. Transactions of atmospheric sciences, 2010, 33(2): 253-256.
[8] 张双益, 王益群, 吕宙安, 等. 利用MERRA数据对测风数据进行代表年订正的研究[J]. 可再生能源, 2014, 32(1): 58-62.
ZHANG S Y, WANG Y Q, LYU Z A, et al.Correcting error of representative year for wind measurement data using MERRA data[J]. Renewable energy resources, 2014, 32(1): 58-62.
[9] 朱金阳, 王聪, 黎波. 不同分析数据进行风速代表年订正的可靠性研究[J]. 太阳能, 2022(8): 43-49.
ZHU J Y, WANG C, LI B.Reliability study for wind speed representative year revision based on different analysis data[J]. Solar energy, 2022(8): 43-49.
[10] 沈学锋, 王修内, 田启明, 等. 测风塔代表年订正方法讨论[J]. 电力勘测设计, 2016(S2): 195-198.
SHEN X F, WANG X N, TIAN Q M, et al.Discussion on the revising methods for representative year of measure wind tower[J]. Electric power survey & design, 2016(S2): 195-198.
[11] MICHELSON S A, BAO J W.Sensitivity of low-level winds simulated by the WRF model in california’s central valley to uncertainties in the large-scale forcing and soil initialization[J]. Journal of applied meteorology and climatology, 2008, 47(12): 3131-3149.
[12] CARVALHO D, ROCHA A, SANTOS C S, et al.Wind resource modelling in complex terrain using different mesoscale-microscale coupling techniques[J]. Applied energy, 2013, 108: 493-504.
[13] 邢雯雯, 孙绩华, 刘辉志, 等. 高黎贡山复杂地形下局地环流的数值模拟研究[J]. 大气科学, 2021, 45(4): 746-758.
XING W W, SUN J H, LIU H Z, et al.Numerical simulation of the local circulation of complex topography on the gaoligong mountains[J]. Chinese journal of atmospheric sciences, 2021, 45(4): 746-758.
[14] 吴安南, 李国平, 师义成, 等. 采用次网格地形方案对白鹤滩水电站坝区一次大风天气的数值模拟[J]. 高原山地气象研究, 2022, 42(3): 22-30.
WU A N, LI G P, SHI Y C, et al.Numerical simulation analysis of a gale weather in the dam area of Baihetan hydropower station by using the subgrid-scale terrain parameterization scheme[J]. Plateau and mountain meteorology research, 2022, 42(3): 22-30.
[15] 张展硕, 段炼. WRF模式不同边界层参数对西南地区风资源模拟[J]. 价值工程, 2022, 41(14): 158-160.
ZHANG Z S, DUAN L.Effect of different planetary boundary layer parameterization schemes on near-surface wind speed in southwest China based on the WRF model[J]. Value engineering, 2022, 41(14): 158-160.

基金

高原与盆地暴雨旱涝灾害四川省重点实验室青年专项(SCQXKJQN202219); 四川省气象服务中心创新发展专项(FWCX202301); 四川气象服务中心创新团队(CXTD202303)

PDF(2387 KB)

Accesses

Citation

Detail

段落导航
相关文章

/