基于声发射b值分析的风力机叶片材料损伤特性研究

廖力达, 陆正鹏, 叶捍, 黄斌, 舒王咏, 张芝铭

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 172-180.

PDF(11073 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(11073 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 172-180. DOI: 10.19912/j.0254-0096.tynxb.2022-1686

基于声发射b值分析的风力机叶片材料损伤特性研究

  • 廖力达1, 陆正鹏1, 叶捍1, 黄斌1,2, 舒王咏1, 张芝铭1
作者信息 +

STUDY ON MATERIAL DAMAGE CHARACTERISTICS OF WIND TURBINE BLADES BASED ON ACOUSTIC EMISSION b-VALUE ANALYSIS

  • Liao Lida1, Lu Zhengpeng1, Ye Han1, Huang Bin1,2, Shu Wangyong1, Zhang Zhiming1
Author information +
文章历史 +

摘要

风力发电机叶片主要材料玻璃纤维环氧树脂增强复合材料(GFRP)的损伤,会造成叶片寿命减少甚至断裂,必须进行损伤检测。采用声发射方法可分析GFRP复合材料损伤特性,实现在线监测叶片性能。该文采用声发射b值特征来表征GFRP损伤程度,并通过主成分分析和k-均值++算法进行声发射参数聚类来分析GFRP损坏模式。结果表明:1)对整个声发射事件进行b值分析,观察到GFRP试样在断裂前b值呈明显下降趋势,表明b值的变化率可作为材料断裂的预警信号。2)根据主成分分析9种声发射参数所占主成分比重,选择声发射信号的幅度、峰值频率两个特征参数。通过k-均值++算法对特征参数进行聚类分析,发现拉伸过程的声发射信号分为了4个簇,并找到每个簇的特征频率。3)通过使用扫描电子显微镜(SEM)对GFRP试样拉伸断口进行观察,得到4个簇分别对应于基体开裂、纤维/基体脱粘、分层和纤维断裂4种损伤模式。基于声发射b值分析方法适用于GFRP损伤特性研究,可在风力发电机叶片损伤检测领域推广。

Abstract

Damage to glass fiber epoxy resin reinforced composite (GFRP), which is the main material of wind turbine blades, will lead to a reduction in blade life and even fracture, so damage detection must be carried out. The acoustic emission method can be used to analyze the damage characteristics of GFRP composite materials and realize online monitoring of blade performance. In this paper, the acoustic emission b-value feature is used to characterize the damage degree of GFRP, and the acoustic emission parameters are clustered by principal component analysis and the k-means++ algorithm to analyze the damage mode of GFRP. The results are as follows:1) The b-value analysis of the whole acoustic emission event shows that the b-value of the GFRP sample shows a significant downward trend before fracture, indicating that the change rate of the b-value can be used as an early warning signal of material fracture. 2) According to the proportion of nine acoustic emission parameters in the principal component analysis, the amplitude and peak frequency of the AE signal are selected. Through the k-means++ algorithm to cluster the characteristic parameters, it is found that the acoustic emission signals in the stretching process are divided into four clusters, and the characteristic frequency of each cluster is found. 3) The tensile fracture of the GFRP specimen is observed by scanning electron microscope (SEM), and four damage modes corresponding to matrix cracking, fiber/matrix debonding, delamination and fiber fracture are obtained. The method based on acoustic emission b-value analysis is applicable to research on GFRP damage characteristics and can be popularized in the field of wind turbine blade damage detection.

关键词

风力机叶片 / 声发射 / 复合材料 / b值分析

Key words

wind turbine blades / acoustic emission / composite materials / b-value analysis

引用本文

导出引用
廖力达, 陆正鹏, 叶捍, 黄斌, 舒王咏, 张芝铭. 基于声发射b值分析的风力机叶片材料损伤特性研究[J]. 太阳能学报. 2024, 45(2): 172-180 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1686
Liao Lida, Lu Zhengpeng, Ye Han, Huang Bin, Shu Wangyong, Zhang Zhiming. STUDY ON MATERIAL DAMAGE CHARACTERISTICS OF WIND TURBINE BLADES BASED ON ACOUSTIC EMISSION b-VALUE ANALYSIS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 172-180 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1686
中图分类号: V258+.3   

参考文献

[1] DU Y, ZHOU S X, JING X J, et al.Damage detection techniques for wind turbine blades: a review[J]. Mechanical systems and signal processing, 2020, 141: 106445.
[2] NSENGIYUMVA W, ZHONG S C, LIN J W, et al.Advances, limitations and prospects of nondestructive testing and evaluation of thick composites and sandwich structures: a state-of-the-art review[J]. Composite structures, 2021, 256: 112951.
[3] AHMED O, WANG X, TRAN M V, et al.Advancements in fiber-reinforced polymer composite materials damage detection methods: towards achieving energy-efficient SHM systems[J]. Composites part B: engineering, 2021, 223: 109136.
[4] SAEEDIFAR M, ZAROUCHAS D.Damage characterization of laminated composites using acoustic emission: a review[J]. Composites part B: engineering, 2020, 195: 108039.
[5] GUTENBERG B.The energy of earthquakes[J]. Quarterly Journal of the Geological Society, 1956, 112(1/2/3/4): 1-14.
[6] SHIOTANI T, OHTSU M, IKEDA K.Detection and evaluation of AE waves due to rock deformation[J]. Construction and building materials, 2001, 15(5/6): 235-246.
[7] WU Y Q, LI S L, WANG D W, et al.Damage monitoring of masonry structure under in situ uniaxial compression test using acoustic emission parameters[J]. Construction and building materials, 2019, 215: 812-822.
[8] DONG L J, ZHANG L Y, LIU H N, et al.Acoustic emission b value characteristics of granite under true triaxial stress[J]. Mathematics, 2022, 10(3): 451.
[9] SAEEDIFAR M, NAJAFABADI M A, ZAROUCHAS D, et al.Barely visible impact damage assessment in laminated composites using acoustic emission[J]. Composites part B: engineering, 2018, 152: 180-192.
[10] JUNG D, YU W R, NA W.Use of acoustic emission b(Ib)-values to quantify damage in composites[J]. Composites communications, 2020, 22: 100499.
[11] ZHOU W, ZHAO W Z, ZHANG Y N, et al.Cluster analysis of acoustic emission signals and deformation measurement for delaminated glass fiber epoxy composites[J]. Composite structures, 2018, 195: 349-358.
[12] AZADI M, SAYAR H, GHASEMI-GHALEBAHMAN A, et al.Tensile loading rate effect on mechanical properties and failure mechanisms in open-hole carbon fiber reinforced polymer composites by acoustic emission approach[J]. Composites part B: engineering, 2019, 158: 448-458.
[13] MOHAMMADI R, NAJAFABADI M A, SAEEDIFAR M, et al.Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites[J]. Composites part B: engineering, 2017, 108: 427-435.
[14] BARILE C, CASAVOLA C, PAPPALETTERA G, et al.Laplacian score and K-means data clustering for damage characterization of adhesively bonded CFRP composites by means of acoustic emission technique[J]. Applied acoustics, 2022, 185: 108425.
[15] GUL S, TABRIZI I E, OKAN B S, et al.An experimental investigation on damage mechanisms of thick hybrid composite structures under flexural loading using multi-instrument measurements[J]. Aerospace science and technology, 2021, 117: 106921.
[16] PEI N, ZHOU S Y, XU C G, et al.Cluster analysis of acoustic emission signals for tensile damage characterization of quasi-static indented carbon/glass fiber-reinforced hybrid laminate composites[J]. Composites part A: applied science and manufacturing, 2021, 150: 106597.
[17] ZHAO W Z, ZHOU W.Cluster analysis of acoustic emission signals and tensile properties of carbon/glass fiber-reinforced hybrid composites[J]. Structural health monitoring, 2019, 18(5/6): 1686-1697.
[18] BARILE C, CASAVOLA C, PAPPALETTERA G, et al.Acoustic emission waveforms for damage monitoring in composite materials: shifting in spectral density, entropy and wavelet packet transform[J]. Structural health monitoring, 2022, 21(4): 1768-1789.
[19] HARIZI W, CHAKI S, BOURSE G, et al.Damage mechanisms assessment of glass fiber-reinforced polymer (GFRP) composites using multivariable analysis methods applied to acoustic emission data[J]. Composite structures, 2022, 289: 115470.
[20] BOHMANN T, SCHLAMP M, EHRLICH I.Acoustic emission of material damages in glass fibre-reinforced plastics[J]. Composites part B: engineering, 2018, 155: 444-451.
[21] ÖZASLAN E, YETGIN A, ACAR B, et al.Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods[J]. Composite structures, 2021, 274: 114299.
[22] SIKDAR S, LIU D Z, KUNDU A.Acoustic emission data based deep learning approach for classification and detection of damage-sources in a composite panel[J]. Composites part B: engineering, 2022, 228: 109450.
[23] LI W H, GUO S J, LIU Y D, et al.Structure health monitoring of composites joint reinforced by acoustic emission based smart composite fasteners[J]. Composites communications, 2022, 33: 101213.
[24] REFAHI OSKOUEI A, YOUSEFI J.Characterization of residual strength in transversely loaded glass-polyester composites by acoustic emission and sentry function[J]. Materials today: proceedings, 2018, 5(1): 381-387.
[25] CHELLIAH S K, PARAMESWARAN P, RAMASAMY S, et al.Optimization of acoustic emission parameters to discriminate failure modes in glass-epoxy composite laminates using pattern recognition[J]. Structural health monitoring, 2019, 18(4): 1253-1267.
[26] MAILLET E, BAKER C, MORSCHER G N, et al.Feasibility and limitations of damage identification in composite materials using acoustic emission[J]. Composites part A: applied science and manufacturing, 2015, 75: 77-83.
[27] HE X F, CAI D, NIYOGI P.Laplacian score for feature selection[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, 2005: 507-514.
[28] JOLLIFFE I.Principal component analysis[A]. Encyclopedia of statistics in behavioral science, 2005, 3: 1580-1584.
[29] ARTHUR D, VASSILVITSKII S.K-means++: the advantages of careful seeding[R]. California: Stanford, 2007.
[30] ROUSSEEUW P J.Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[J]. Journal of computational and applied mathematics, 1987, 20: 53-65.
[31] DAVIES D, BOULDIN D. A cluster separation measure[J]. IEEE transactions on pattern analysis and machine intelligence, 1979, PAMI-1(2): 224-227.

基金

国家自然科学基金(51908064); 湖南省自然科学基金(2021JJ30717)

PDF(11073 KB)

Accesses

Citation

Detail

段落导航
相关文章

/