基于阻抗法的MMC-HVDC并网系统高频振荡分析及抑制研究

王小丽

太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 244-252.

PDF(2105 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2105 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (3) : 244-252. DOI: 10.19912/j.0254-0096.tynxb.2022-1688

基于阻抗法的MMC-HVDC并网系统高频振荡分析及抑制研究

  • 王小丽
作者信息 +

HIGH FREQUENCY OSCILLATION ANALYSIS AND SUPPRESSION OF MMC-HVDC GRID CONNECTED SYSTEM BASED ON IMPEDANCE METHOD

  • Wang Xiaoli
Author information +
文章历史 +

摘要

针对某海上风电经多模块多电平换流器(MMC)接入电网系统,陆上换流站与电网发生宽频振荡的问题,基于阻抗分析的思想和MMC控制系统结构建立dq坐标下MMC控制系统频域模型。将MMC控制系统模型的dq耦合部分转换至时域、abc坐标系下进行化简,实现了系统解耦,然后建立MMC控制系统abc坐标下的频域模型,进而结合MMC等效电路的分析建立其等效阻抗模型。通过阻抗分析法对换流器阻抗模型和电网阻抗模型的特性进行分析,验证了振荡发生的机理。最后对抑制宽频振荡的措施进行分析,给出附加带阻滤波器的解决方案,并通过现场案例的振荡现象进行验证。

Abstract

In order to solve the problem that a certain offshore wind power is connected to the power grid through modular multilevel converter (MMC), and broadband oscillation occurs between the onshore converter station and the power grid, the frequency domain model of MMC control system in dq coordinates is established based on the idea of impedance analysis and MMC control system structure. The d and q coupling parts of the MMC control system model are converted to the time domain and abc coordinate system for simplification, and the system decoupling is realized. Then the frequency domain model of the MMC control system in abc coordinate system is established, and its equivalent impedance model is established based on the analysis of the MMC equivalent circuit. The characteristics of converter impedance model and power grid impedance model are analyzed by impedance analysis method, and the mechanism of oscillation is verified. Finally, the measures to suppress broadband oscillation are analyzed, and the solution of additional band stop filter is given, which is verified by the oscillation phenomenon of field cases.

关键词

海上风电场 / 高压直流输电 / 控制系统分析 / 多模块多电平换流器(MMC) / 振荡抑制 / 阻抗特性分析

Key words

offshore wind farms / HVDC power transmission / control system analysis / modular multilevel converter (MMC) / oscillation suppression / impedance characteristic analysis

引用本文

导出引用
王小丽. 基于阻抗法的MMC-HVDC并网系统高频振荡分析及抑制研究[J]. 太阳能学报. 2023, 44(3): 244-252 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1688
Wang Xiaoli. HIGH FREQUENCY OSCILLATION ANALYSIS AND SUPPRESSION OF MMC-HVDC GRID CONNECTED SYSTEM BASED ON IMPEDANCE METHOD[J]. Acta Energiae Solaris Sinica. 2023, 44(3): 244-252 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1688
中图分类号: TK513.5   

参考文献

[1] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14.
TANG G F, HE Z Y, PANG H.Research, application and development of VSC-HVDC engineering technology[J]. Automation of electric power systems, 2013, 37(15): 3-14.
[2] 陈鹤林, 郑晓云. 海上风电多端柔性直流并网系统频率支持研究[J]. 太阳能学报, 2022, 43(3): 356-365.
CHEN H L, ZHENG X Y.Research on frequency support of offshore wind power VSC-MTDC grid connected system[J]. Acta energiae solaris sinica, 2022, 43(3): 356-365.
[3] 辛业春, 王威儒, 李国庆, 等. 海上风电MMC-HVDC联网系统控制策略[J]. 太阳能学报, 2019, 40(6): 1731-1738.
XIN Y C, WANG W R, LI G Q, et al.Control strategy on grid connected offshore wind farm based on MMC-HVDC[J]. Acta energiae solaris sinica, 2019, 40(6): 1731-1738.
[4] 赵书强, 沈俊铃, 邵冰冰. 直驱风电场经柔直并网系统全运行区域次同步振荡特性分析[J]. 太阳能学报, 2021, 42(12): 163-173.
ZHAO S Q, SHEN J L, SHAO B B.Subsynchronous oscillation characteristics analysis of grid-connected direct-drive wind farms via VSC-HVDC system under whole operation regions of D-PMSG[J]. Acta energiae solaris sinica, 2021, 42(12): 163-173.
[5] CESPEDES M, SUN J.Impedance modelling and analysis of grid-connected voltage-source converters[J]. IEEE transactions on power electronics, 2014, 29(3): 1254-1261.
[6] 郭琦, 郭海平, 黄立滨. 电网电压前馈对柔性直流输电在弱电网下的稳定性影响[J]. 电力系统自动化, 2018, 42(14): 139-144.
GUO Q, GUO H P, HUANG L B.Effect of grid voltage feedforward on VSC-HVDC stability in weak power grid[J]. Automation of electric power systems, 2018, 42(14): 139-144.
[7] 杜东冶, 郭春义, 贾秀芳, 等. 基于附加带阻滤波器的模块化多电平换流器高频谐振抑制策略[J]. 电工技术学报, 2021, 36(7): 1516-1525.
DU D Y, GUO C Y, JIA X F, et al.Suppression strategy for high frequency resonance of modular multilevel converter based on additional band-stop filter[J]. Transactions of China Electrotechnical Society, 2021, 36(7): 1516-1525.
[8] 郭贤珊, 刘斌, 梅红明, 等. 渝鄂直流背靠背联网工程交直流系统谐振分析与抑制[J]. 电力系统自动化, 2020, 44(20): 157-164.
GUO X S, LIU B, MEI H M, et al.Analysis and suppression of resonance between AC and DC systems in Chongqing-Hubei back-to-back HVDC project of China[J]. Automation of electric power systems, 2020, 44(20): 157-164.
[9] 年珩, 朱茂玮, 徐韵扬, 等. 双闭环定交流电压控制下MMC换流站阻抗建模及稳定性分析[J]. 电力系统自动化, 2020, 44(4): 81-90.
NIAN H, ZHU M W, XU Y Y, et al.Impedance modeling and system stability analysis of MMC with doubleclosed-loop AC voltage control[J]. Automation of electric power systems, 2020, 44(4): 81-90.
[10] 冯俊杰, 邹常跃, 杨双飞, 等. 针对中高频谐振问题的柔性直流输电系统阻抗精确建模与特性分析[J]. 中国电机工程学报, 2020, 40(15): 4805-4819.
FENG J J, ZOU C Y, YANG S F, et al.Accurate impedance modeling and characteristic analysis of VSC-HVDC system for mid-and high-frequency resonance problems[J]. Proceedings of the CSEE, 2020, 40(15): 4805-4819.
[11] 吕敬, 蔡旭. 基于谐波线性化的模块化多电平换流器阻抗建模[J]. 电力系统自动化, 2017, 41(4): 136-142.
LYU J, CAI X.Harmonic linearization based impedance modeling of modular multilevel converters[J]. Automation of electric power systems, 2017, 41(4): 136-142.
[12] 苑宾, 李探, 许建中, 等. 联接弱交流电网MMC系统小信号稳定性分析[J]. 中国电机工程学报, 2017, 37(18): 5339-5349.
YUAN B, LI T, XU J Z, et al.Small-signal stability analysis of modular multilevel converter connected to a weak AC system[J]. Proceedings of the CSEE, 2017, 37(18): 5339-5349.
[13] 鲁晓军, 林卫星, 向往, 等. 基于模块化多电平换流器的直流电网小信号建模[J]. 中国电机工程学报, 2018, 38(4): 1143-1156.
LU X J, LIN W X, XIANG W, et al.Small signal modeling of MMC-based DC grid[J]. Proceedings of the CSEE, 2018, 38(4): 1143-1156.
[14] 郭春义, 殷子寒, 王烨, 等. LCC-MMC型混合直流输电系统小干扰稳定性研究[J]. 中国电机工程学报, 2019, 39(4): 1040-1051.
GUO C Y, YIN Z H, WANG Y, et al.Investigation on small-signal stability of hybrid LCC-MMC HVDC system[J]. Proceedings of the CSEE, 2019, 39(4): 1040-1051.
[15] 李云丰, 贺之渊, 庞辉, 等. 柔性直流输电系统高频稳定性分析及抑制策略: (一)稳定性分析[J]. 中国电机工程学报, 2021, 41(17): 5842-5856.
LI Y F, HE Z Y, PANG H, et al.High frequency stability analysis and suppression strategy of MMC-HVDC systems: Part Ⅰ stability analyis[J]. Proceedings of the CSEE, 2021, 41(17): 5842-5856.
[16] 李云丰, 贺之渊, 孔明, 等. 柔性直流输电系统高频稳定性分析及抑制策略: (二)阻尼控制抑制策略[J]. 中国电机工程学报, 2021, 41(19): 6601-6616.
LI Y F, HE Z Y, KONG M, et al.High frequency stability analysis and suppression strategy of MMC-HVDC systems: Part Ⅱ additional damping control strategy[J]. Proceedings of the CSEE, 2021, 41(19): 6601-6616.
[17] 黄方能, 韦超, 周剑, 等. 基于谐波状态空间模型的MMC系统高频振荡分析[J]. 电网技术, 2021, 45(5): 1967-1976.
HUANG F N, WEI C, ZHOU J, et al.Analysis of high frequency resonance of MMC system based on harmonic state space model[J]. Power system technology, 2021, 45(5): 1967-1976.
[18] 张思彤, 梁纪峰, 马燕峰, 等. 直驱风电场经柔性直流输电并网的宽频振荡特性分析[J]. 电力系统保护与控制, 2022, 50(14): 34-46.
ZHANG S T, LIANG J F, MA Y F, et al.Broadband oscillation characteristics analysis of a VSC-HVDC connected direct drive wind farm[J]. Power system protection and control, 2022, 50(14): 34-46.
[19] 郭贤珊, 刘泽洪, 李云丰, 等. 柔性直流输电系统高频振荡特性分析及抑制策略研究[J]. 中国电机工程学报, 2020, 40(1): 19-29.
GUO X S, LIU Z H, LI Y F, et al.Characteristic analysis of high-frequency resonance of flexible high voltage direct current and research on its damping control strategy[J]. Proceedings of the CSEE, 2020, 40(1): 19-29.
[20] 侯延琦, 刘崇茹, 王宇, 等. 柔性直流输电系统高频振荡抑制策略研究[J]. 中国电机工程学报, 2021, 41(11): 3741-3750.
HOU Y Q, LIU C R, WANG Y, et al.Research on the suppression strategy of high-frequency resonance for MMC-HVDC[J]. Proceedings of the CSEE, 2021, 41(11): 3741-3750.
[21] 陈威, 汪娟娟, 叶运铭, 等. 柔性直流输电系统交流侧中高频谐振附加阻尼抑制措施[J]. 电力系统自动化, 2021, 45(18): 151-161.
CHEN W, WANG J J, YE Y M, et al.Additional damping suppression measures for medium-and high-frequency resonance on AC side of MMC-HVDC transmission system[J]. Automation of electric power systems, 2021, 45(18): 151-161.
[22] VIETO I, DU X, NIAN H, et al.Frequency-domain coupling in two-level VSC small-signal dynamics[C]//2017 IEEE 18th Workshop on Control and Modeling for Power Electronics(COMPEL), Stanford, CA, USA: IEEE, 2017: 1-8.
[23] WU H, WANG X F.Dynamic impact of zero-sequence circulating current on modular multilevel converters: complex-valued AC impedance modeling and analysis[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1947-1963.
[24] 刘焕, 岳伟, 张一工, 等. 基于准比例-谐振控制的MMC-HVDC环流抑制策略[J]. 电力系统自动化, 2015, 39(12): 146-151.
LIU H, YUE W, ZHANG Y G, et al.Circuiting current restraining strategy based on quasi proportional-resonance control in MMC-HVDC[J]. Automation of electric power systems, 2015, 39(12): 146-151.
[25] SUN J.Impedance-based stability criterion for gridconnected inverters[J]. IEEE transactions on power electronics, 2011, 26(11): 3075-3078.
[26] ZHOU C Y, RAO H, XU S K, et al.Analysis of resonance between a VSC-HVDC converter and the AC grid[J]. IEEE transactions on power electronics, 2018, 33(12): 10157-11016.
[27] 李亦伦. 一起风电场高频振荡事故的原因和解决方法分析[J]. 电力系统保护与控制, 2021, 49(9): 135-142.
LI Y L.Analysis of causes and solutions of a high-frequency oscillation accident in a wind farm[J]. Power system protection and control, 2021, 49(9): 135-142.

基金

国家自然科学基金(61803219)

PDF(2105 KB)

Accesses

Citation

Detail

段落导航
相关文章

/