TOPCon太阳电池电子选择性接触研究

叶浩然, 何佳龙, 陈杨, 苏荣, 陈涛, 俞健

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 475-479.

PDF(1774 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1774 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 475-479. DOI: 10.19912/j.0254-0096.tynxb.2022-1689

TOPCon太阳电池电子选择性接触研究

  • 叶浩然1, 何佳龙1, 陈杨1, 苏荣2, 陈涛1, 俞健1
作者信息 +

RESEARCH ON ELECTRON SELECTIVE CONTACT OF TOPCon SOLAR CELLS

  • Ye Haoran1, He Jialong1, Chen Yang1, Su Rong2, Chen Tao1, Yu Jian1
Author information +
文章历史 +

摘要

通过Afors-Het软件模拟建立TOPCon太阳电池模型,系统分析隧穿氧化SiO2层厚度、n+ poly-Si层掺杂浓度、背金属电极功函数以及SiO2/n+ poly-Si侧的能带偏移量对TOPCon太阳电池性能的影响。结果表明:SiO2/n+ poly-Si叠层钝化结构能实现较好的电子选择性传输性能,当SiO2层厚度为1.1 nm、n+ poly-Si层掺杂浓度为1×1020 cm-3时,是最佳工艺窗口,且显示出改善电子选择性传输层对于TOPCon太阳电池效率提升的巨大潜力。

Abstract

Through Afors-Het simulation software, the TOPCon solar cell model is established and the effects of tunneling through the oxide SiO2 layer thickness, n+ poly-Si layer doping concentration, back-metal electrode work function and energy band offset of the SiO2/n+ poly-Si side on the performance of TOPCon solar cells are systematically analyzed. The simulation results show that the SiO2/n+ poly-Si stacked passivation structure can achieve better electron selective transport performance. It is the best process window when the thickness of the SiO2 layer is 1.1 nm and the doping concentration of the n+ poly-Si layer is 1×1020 cm-3. It also shows the great potential of improving the electron selective transport layer for the efficiency improvement of TOPCon solar cells.

关键词

太阳电池 / 钝化 / 电子特性 / 模拟平台 / TOPCon

Key words

solar cells / passivation / electronic properties / simulation platform / TOPCon

引用本文

导出引用
叶浩然, 何佳龙, 陈杨, 苏荣, 陈涛, 俞健. TOPCon太阳电池电子选择性接触研究[J]. 太阳能学报. 2024, 45(2): 475-479 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1689
Ye Haoran, He Jialong, Chen Yang, Su Rong, Chen Tao, Yu Jian. RESEARCH ON ELECTRON SELECTIVE CONTACT OF TOPCon SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 475-479 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1689
中图分类号: TK513   

参考文献

[1] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274.
[2] 白宇, 何佳龙, 李君君, 等. 光电性能可调的TiN薄膜及在TOPCon太阳电池的应用[J]. 太阳能学报, 2023, 44(9): 72-77.
BAI Y, HE J L, LI J J, et al.TiN thin film with adjustable photoelectric performance and its application in TOPCon solar cell[J]. Acta energiae solaris sinica, 2023, 44(9): 72-77.
[3] 魏凯峰, 刘大伟, 倪玉凤, 等. N型TOPCon晶硅太阳能电池光注入退火增效的研究[J]. 人工晶体学报, 2021, 50(1): 66-72.
WEI K F, LIU D W, NI Y F, et al.Light injection study of n-TOPCon silicon solar cells on annealing synergies[J]. Journal of synthetic crystals, 2021, 50(1): 66-72.
[4] RICHTER A, BENICK J, FELDMANN F, et al.N-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar energy materials and solar cells, 2017, 173: 96-105.
[5] TAO Y G, UPADHYAYA V, JONES K, et al.Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity[J]. AIMS materials science, 2016, 3(1): 180-189.
[6] 吕欣, 林涛, 董鹏. 背表面掺杂对n型TOPCon电池特性的影响研究[J]. 太阳能学报, 2021, 42(11): 41-45.
LYU X, LIN T, DONG P.Influence of back surface doping concentration on n-type TOPCon solar cells[J]. Acta energiae solaris sinica, 2021, 42(11): 41-45.
[7] 翟金叶, 张伟, 王子谦, 等. 21.5%以上效率Panda-TOPCon双面电池技术研究[J]. 太阳能学报, 2019, 40(4): 1029-1033.
ZHAI J Y,ZHANG W,WANG Z Q, et al.Research of >21.5% high efficiency Panda-TOPCon bifacial solar cell[J]. Acta energiae solaris sinica, 2019, 40(4): 1029-1033.
[8] PADHAMNATH P, KHANNA A, NANDAKUMAR N, et al.Development of thin polysilicon layers for application in monoPoly™ cells with screen-printed and fired metallization[J]. Solar energy materials and solar cells, 2020, 207: 110358.
[9] PADHAMNATH P, BUATIS J K, KHANNA A, et al.Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPoly™ solar cells[J]. Solar energy, 2020, 202: 73-79.
[10] GHOSH D K, BOSE S, DAS G, et al.Fundamentals, present status and future perspective of TOPCon solar cells: a comprehensive review[J]. Surfaces and interfaces, 2022, 30: 101917.
[11] MACK S, SCHUBE J, FELLMETH T, et al.Metallisation of boron-doped polysilicon layers by screen printed silver pastes[J]. Physica status solidi (RRL)-rapid research letters, 2017, 11(12): 1700334.
[12] ZHANG Z, ZENG Y H, JIANG C S, et al.Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells[J]. Solar energy materials and solar cells, 2018, 187: 113-122.
[13] QUAN C, ZENG Y H, WANG D, et al.Computational analysis of a high-efficiency tunnel oxide passivated contact (TOPCon) solar cell with a low-work-function electron-selective-collection layer[J]. Solar energy, 2018, 170: 780-787.
[14] CHOWDHURY S, CHAVAN G, KIM S, et al.Analysis of passivation property using thin Al2O3 layer and simulation for realization of high-efficiency TOPCon cell[J]. Infrared physics and technology, 2020, 110: 103436.
[15] WAN Y M, SAMUNDSETT C, YAN D, et al.A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells[J]. Applied physics letters, 2016, 109(11): 113901.
[16] HUANG Y Q, ZENG Y H, ZHANG Z, et al.UV-Raman scattering of thin film Si with ultrathin silicon oxide tunnel contact for high efficiency crystal silicon solar cells[J]. Solar energy materials and solar cells, 2019, 192: 154-160.
[17] ZHOU Y, TAO K, LIU A M, et al.Screen-printed n-type industry solar cells with tunnel oxide passivated contact doped by phosphorus diffusion[J]. Superlattices and microstructures, 2020, 148: 106720.
[18] MACK S, HERRMANN D, LENES M, et al.Progress in p-type tunnel oxide-passivated contact solar cells with screen-printed contacts[J]. Solar RRL, 2021, 5(5): 2100152.
[19] LU Z B, LIU X L, HOU G Z, et al.Doping-free titanium nitride carrier selective contacts for efficient organic-inorganic hybrid solar cells[J]. ACS applied energy materials, 2020, 3(9): 9208-9215.
[20] SCHINDLER F, MICHL B, KRENCKEL P, et al.Optimized multicrystalline silicon for solar cells enabling conversion efficiencies of 22%[J]. Solar energy materials and solar cells, 2017, 171: 180-186.

基金

国家自然科学基金(61904154); 四川省重点研发计划(2022YFG0229); 成都市技术创新研发项目(2022-YF05-00384-SN)

PDF(1774 KB)

Accesses

Citation

Detail

段落导航
相关文章

/