RESEARCH ON ELECTRON SELECTIVE CONTACT OF TOPCon SOLAR CELLS
Ye Haoran1, He Jialong1, Chen Yang1, Su Rong2, Chen Tao1, Yu Jian1
Author information+
1. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China; 2. Tongwei Solar (Chengdu) Co., Ltd., Chengdu 610200, China
Through Afors-Het simulation software, the TOPCon solar cell model is established and the effects of tunneling through the oxide SiO2 layer thickness, n+ poly-Si layer doping concentration, back-metal electrode work function and energy band offset of the SiO2/n+ poly-Si side on the performance of TOPCon solar cells are systematically analyzed. The simulation results show that the SiO2/n+ poly-Si stacked passivation structure can achieve better electron selective transport performance. It is the best process window when the thickness of the SiO2 layer is 1.1 nm and the doping concentration of the n+ poly-Si layer is 1×1020 cm-3. It also shows the great potential of improving the electron selective transport layer for the efficiency improvement of TOPCon solar cells.
Ye Haoran, He Jialong, Chen Yang, Su Rong, Chen Tao, Yu Jian.
RESEARCH ON ELECTRON SELECTIVE CONTACT OF TOPCon SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 475-479 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1689
中图分类号:
TK513
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FELDMANN F, BIVOUR M, REICHEL C, et al.Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics[J]. Solar energy materials and solar cells, 2014, 120: 270-274. [2] 白宇, 何佳龙, 李君君, 等. 光电性能可调的TiN薄膜及在TOPCon太阳电池的应用[J]. 太阳能学报, 2023, 44(9): 72-77. BAI Y, HE J L, LI J J, et al.TiN thin film with adjustable photoelectric performance and its application in TOPCon solar cell[J]. Acta energiae solaris sinica, 2023, 44(9): 72-77. [3] 魏凯峰, 刘大伟, 倪玉凤, 等. N型TOPCon晶硅太阳能电池光注入退火增效的研究[J]. 人工晶体学报, 2021, 50(1): 66-72. WEI K F, LIU D W, NI Y F, et al.Light injection study of n-TOPCon silicon solar cells on annealing synergies[J]. Journal of synthetic crystals, 2021, 50(1): 66-72. [4] RICHTER A, BENICK J, FELDMANN F, et al.N-Type Si solar cells with passivating electron contact: identifying sources for efficiency limitations by wafer thickness and resistivity variation[J]. Solar energy materials and solar cells, 2017, 173: 96-105. [5] TAO Y G, UPADHYAYA V, JONES K, et al.Tunnel oxide passivated rear contact for large area n-type front junction silicon solar cells providing excellent carrier selectivity[J]. AIMS materials science, 2016, 3(1): 180-189. [6] 吕欣, 林涛, 董鹏. 背表面掺杂对n型TOPCon电池特性的影响研究[J]. 太阳能学报, 2021, 42(11): 41-45. LYU X, LIN T, DONG P.Influence of back surface doping concentration on n-type TOPCon solar cells[J]. Acta energiae solaris sinica, 2021, 42(11): 41-45. [7] 翟金叶, 张伟, 王子谦, 等. 21.5%以上效率Panda-TOPCon双面电池技术研究[J]. 太阳能学报, 2019, 40(4): 1029-1033. ZHAI J Y,ZHANG W,WANG Z Q, et al.Research of >21.5% high efficiency Panda-TOPCon bifacial solar cell[J]. Acta energiae solaris sinica, 2019, 40(4): 1029-1033. [8] PADHAMNATH P, KHANNA A, NANDAKUMAR N, et al.Development of thin polysilicon layers for application in monoPoly™ cells with screen-printed and fired metallization[J]. Solar energy materials and solar cells, 2020, 207: 110358. [9] PADHAMNATH P, BUATIS J K, KHANNA A, et al.Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPoly™ solar cells[J]. Solar energy, 2020, 202: 73-79. [10] GHOSH D K, BOSE S, DAS G, et al.Fundamentals, present status and future perspective of TOPCon solar cells: a comprehensive review[J]. Surfaces and interfaces, 2022, 30: 101917. [11] MACK S, SCHUBE J, FELLMETH T, et al.Metallisation of boron-doped polysilicon layers by screen printed silver pastes[J]. Physica status solidi (RRL)-rapid research letters, 2017, 11(12): 1700334. [12] ZHANG Z, ZENG Y H, JIANG C S, et al.Carrier transport through the ultrathin silicon-oxide layer in tunnel oxide passivated contact (TOPCon) c-Si solar cells[J]. Solar energy materials and solar cells, 2018, 187: 113-122. [13] QUAN C, ZENG Y H, WANG D, et al.Computational analysis of a high-efficiency tunnel oxide passivated contact (TOPCon) solar cell with a low-work-function electron-selective-collection layer[J]. Solar energy, 2018, 170: 780-787. [14] CHOWDHURY S, CHAVAN G, KIM S, et al.Analysis of passivation property using thin Al2O3 layer and simulation for realization of high-efficiency TOPCon cell[J]. Infrared physics and technology, 2020, 110: 103436. [15] WAN Y M, SAMUNDSETT C, YAN D, et al.A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells[J]. Applied physics letters, 2016, 109(11): 113901. [16] HUANG Y Q, ZENG Y H, ZHANG Z, et al.UV-Raman scattering of thin film Si with ultrathin silicon oxide tunnel contact for high efficiency crystal silicon solar cells[J]. Solar energy materials and solar cells, 2019, 192: 154-160. [17] ZHOU Y, TAO K, LIU A M, et al.Screen-printed n-type industry solar cells with tunnel oxide passivated contact doped by phosphorus diffusion[J]. Superlattices and microstructures, 2020, 148: 106720. [18] MACK S, HERRMANN D, LENES M, et al.Progress in p-type tunnel oxide-passivated contact solar cells with screen-printed contacts[J]. Solar RRL, 2021, 5(5): 2100152. [19] LU Z B, LIU X L, HOU G Z, et al.Doping-free titanium nitride carrier selective contacts for efficient organic-inorganic hybrid solar cells[J]. ACS applied energy materials, 2020, 3(9): 9208-9215. [20] SCHINDLER F, MICHL B, KRENCKEL P, et al.Optimized multicrystalline silicon for solar cells enabling conversion efficiencies of 22%[J]. Solar energy materials and solar cells, 2017, 171: 180-186.