基于Mutipole方法对竖直单U型地埋管换热器钻孔内外的耦合传热过程进行求解,在钻孔内三热阻和四热阻简化传热模型基础上,详细地分析钻孔内的复杂稳态传热过程,参数化研究埋管布置结构、回填料与岩土热物性等因素对钻孔内埋管间直接传热热阻的影响规律,揭示导致钻孔内埋管间负热阻现象的本质原因,对钻孔内热阻传热模型的工程实践应用给出参考意见。
Abstract
This paper solves the coupled heat transfer process inside and outside the borehole wall of a vertical single U-tube ground heat exchanger by using the Mutipole method, analyses the steady-state heat transfer process within the borehole based on the simplified three and four thermal resistance models, parametrically investigates the influence of the pipe layout, thermal properties of grout/soil and other factors on the direct thermal resistance between pipes in the borehole, reveals the mechanism of the negative thermal resistance phenomenon between pipes in the borehole, and some constructive suggestions have been proposed for the industrial application of the simplified thermal resistance model within borehole.
关键词
地源热泵 /
换热器 /
热阻 /
负热阻现象 /
Multipole法
Key words
ground source heat pumps /
heat exchanger /
thermal resistance /
negative thermal resistance phenomenon /
Multipole method
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 徐伟. 水源地源热泵高效应用关键技术研究与示范课题组编写. 中国地源热泵发展研究报告: 2008[M]. 北京: 中国建筑工业出版社, 2008.
XU W.Prepared by the Research and Demonstration Research Team on Key Technologies for Efficient Application of Water Source Ground Source Heat Pumps. Report on China ground-source heat pump(2008)[M]. Beijing: China Architecture & Building Press, 2008.
[2] 方肇洪, 刁乃仁, 崔萍. 地埋管地源热泵系统技术集成[J]. 建设科技, 2012(13): 56-57, 61.
FANG Z H, DIAO N R, CUI P.Technical integration of ground source heat pump system with buried pipe[J]. Construction science and technology, 2012(13): 56-57, 61.
[3] CLAESSON J, HELLSTRÖM G. Multipole method to calculate borehole thermal resistances in a borehole heat exchanger[J]. HVAC&R research, 2011, 17(6): 895-911.
[4] MINAEI A, TALEE Z, SAFIKHANI H, et al.Thermal resistance capacity model for transient simulation of Earth-Air heat exchangers[J]. Renewable energy, 2021, 167: 558-567.
[5] PASQUIER P, MARCOTTE D.Short-term simulation of ground heat exchanger with an improved TRCM[J]. Renewable energy, 2012, 46: 92-99.
[6] MINAEI A, MAEREFAT M.Thermal resistance capacity model for short-term borehole heat exchanger simulation with non-stiff ordinary differential equations[J]. Geothermics, 2017, 70: 260-270.
[7] ESKILSON P, CLAESSON J.Simulation model for thermally interacting heat extraction boreholes[J]. Numerical heat transfer, 1988, 13(2): 149-165.
[8] LIAO Q, ZHOU C, CUI W Z, et al.New correlations for thermal resistances of vertical single U-tube ground heat exchanger[J]. Journal of thermal science and engineering applications, 2012, 4(3): 1.
[9] LAMARCHE L, KAJL S, BEAUCHAMP B.A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems[J]. Geothermics, 2010, 39(2): 187-200.
[10] 朱小波. 基于地埋管换热器热阻-热容网络模型的岩土热响应测试方法研究[D]. 重庆: 重庆大学, 2016.
ZHU X B.New thermal response test based on thermal resistance-capacitance network model of vertical ground heat exchanger[D]. Chongqing: Chongqing University, 2016.
[11] BAUER D, HEIDEMANN W, MÜLLER-STEINHAGEN H, et al. Thermal resistance and capacity models for borehole heat exchangers[J]. International journal of energy research, 2011, 35(4): 312-320.
[12] BENNET J, CLAESSON J, HELLSTRÖM G. Multipole method to compute the conductive heat flows to and between pipes in a composite cylinder[R]. Notes on Heat Transfer, 1987, 3.
[13] CLAESSON J, JAVED S.Explicit multipole formula for the local thermal resistance in an energy pile:the line-source approximation[J]. Energies, 2020, 13(20): 5445.
基金
重庆市科技计划(YDZX20195000004938)