适用于太阳电池的低应力高增益升压变换器

许杰, 马小三

太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 480-488.

PDF(2293 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2293 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (2) : 480-488. DOI: 10.19912/j.0254-0096.tynxb.2022-1707

适用于太阳电池的低应力高增益升压变换器

  • 许杰, 马小三
作者信息 +

LOW STRESS HIGH GAIN BOOST CONVERTER FOR SOLAR CELLS

  • Xu Jie, Ma Xiaosan
Author information +
文章历史 +

摘要

在太阳能开发利用过程中,升压变换器能实现较高升压比,但存在开关器件电压应力过高问题。为了降低开关器件电压应力,提出一种低应力高增益升压变换器基本结构,在提高电压增益的同时降低了电压应力。为了更好地适用于多种升压场合,将二次型升压网络、开关电感网络、开关电感电容网络和准Z源网络4种升压单元对其储能电感进行替换,得到一类低应力高增益升压变换器,分析了利用准Z源网络替代的高增益升压变换器工作特性,并与同类型变换器进行对比分析。最后,利用Matlab/Simulink仿真软件和实验样机验证了所提变换器理论分析的正确性和可行性。

Abstract

In the process of solar energy development and utilization, Boost converter can achieve high voltage Boost ratio, but there is a problem of high voltage stress of switching devices. In order to reduce the switching device voltage stress a low stress high gain Boost converter basic structure is proposed, which reduces the voltage stress while increasing the voltage gain. In order to better apply to a variety of boosting situations, four types of boosting units, namely secondary Boost network, switched inductor network, switched inductor-capacitor network and quasi-Z source network, are replaced with their energy storage inductors to obtain a class of low-stress high-gain Boost converter. The operating characteristics of the high-gain Boost converter replaced by using quasi-Z source network are analyzed and compared with the same type of converter. Finally, the correctness and feasibility of the theoretical analysis of the proposed converter are verified by using Matlab/Simulink simulation software and experimental prototypes.

关键词

光伏发电 / 准Z源 / 升压单元 / 高增益 / 低应力 / 升压变换器

Key words

PV power generation / quasi-Z source / Boost unit / high gain / low stress / Boost converter

引用本文

导出引用
许杰, 马小三. 适用于太阳电池的低应力高增益升压变换器[J]. 太阳能学报. 2024, 45(2): 480-488 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1707
Xu Jie, Ma Xiaosan. LOW STRESS HIGH GAIN BOOST CONVERTER FOR SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2024, 45(2): 480-488 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1707
中图分类号: TM46   

参考文献

[1] 戚永志, 黄越辉, 王伟胜, 等. 高比例清洁能源下水风光消纳能力分析方法研究[J]. 电网与清洁能源, 2020, 36(1): 55-63.
QI Y Z, HUANG Y H, WANG W S, et al.A study on hydro-wind-solar consumption analysis method for high proportion of clean energy[J]. Power system and clean energy, 2020, 36(1): 55-63.
[2] 任涛, 韩一峰, 韩硕, 等. n型高效光伏组件发电性能研究[J]. 太阳能学报, 2022, 43(12): 13-18.
REN T, HAN Y F, HAN S, et al.Power generation performance study of high-efficiency n-type PV module[J]. Acta energiae solaris sinica, 2022, 43(12): 13-18.
[3] 肖钧文, 黄辉先, 刘晓舟. 大规模风光储并网碳经济性评估[J]. 太阳能学报, 2020, 41(6): 171-177.
XIAO J W, HUANG H X, LIU X Z.Carbon economy evaluation of large-scale wind-solar-storage power[J]. Acta energiae solaris sinica, 2020, 41(6): 171-177.
[4] 王磊, 石家瑞, 吴源鑫, 等. 基于光伏系统可靠性的组件与逆变器最优容配比研究[J]. 太阳能学报, 2021, 42(12): 498-504.
WANG L, SHI J R, WU Y X, et al.Research on optimal capacity ratio of module and inverter based on reliability of photovoltaic system[J]. Acta energiae solaris sinica, 2021, 42(12): 498-504.
[5] 欧煌, 吴伟. Boost电路寄生参数影响分析与验证[J]. 电力电子技术, 2017, 51(8): 98-99, 103.
OU H, WU W.Analysis and experiment of parasitic parameters in Boost circuit[J]. Power electronics, 2017, 51(8): 98-99, 103.
[6] 赵耀民, 任春光, 秦文萍, 等. 电路非理想参数对光伏系统最大功率追踪的影响[J]. 水电能源科学, 2016, 34(1): 203-207, 202.
ZHAO Y M, REN C G, QIN W P, et al.Impact of non-ideal circuit parameters on MPPT in PV systems[J]. Water resources and power, 2016, 34(1): 203-207, 202.
[7] CACCIATO M, CONSOLI A, ATTANASIO R, et al.Soft-switching converter with HF transformer for grid-connected photovoltaic systems[J]. IEEE transactions on industrial electronics, 2010, 57(5): 1678-1686.
[8] 陈显东, 曹太强, 林玉婷. 非隔离型高增益DC/DC变换器综述[J]. 电测与仪表, 2017, 54(13): 97-104.
CHEN X D, CAO T Q, LIN Y T.A review of non-isolated high gain DC/DC converter[J]. Electrical measurement & instrumentation, 2017, 54(13): 97-104.
[9] HUANG D, PAN J C, LUO P, et al.An improved dual switches quadratic Boost DC-DC converter[C]//2021 IEEE 2nd China International Youth Conference on Electrical Engineering(CIYCEE). Chengdu, China, 2021: 1-6.
[10] BAO D Y, KUMAR A, PAN X W, et al.Switched inductor double switch high gain DC-DC converter for renewable applications[J]. IEEE access, 2021, 9: 14259-14270.
[11] ZAID M, AHMAD J, SARWAR A, et al.A transformerless quadratic Boost high gain DC-DC converter[C]//2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). Jaipur, India, 2020: 1-6.
[12] GAJANAYAKE C J,LIN L F,BENG G H,et al.Extended Boost Z-source inverters[J]. IEEE transactions on power electronics, 2010, 25(10): 2642-2652.
[13] LI G L, JIN X, CHEN X Y, et al.A novel quadratic Boost converter with low inductor currents[J]. CPSS transactions on power electronics and applications, 2020, 5(1): 1-10.
[14] RAHIMI T, DING L, GHOLIZADEH H, et al.An ultra high step-up DC-DC converter based on the Boost, Luo, and voltage doubler structure: mathematical expression, simulation, and experimental[J]. IEEE access, 2021, 9: 132011-132024.
[15] ZHANG G D, ZHANG B, LI Z, et al.A 3-Z-network Boost converter[J]. IEEE transactions on industrial electronics, 2015, 62(1): 278-288.
[16] ZHAO J W, CHEN D L, JIANG J H.Transformerless high step-up DC-DC converter with low voltage stress for fuel cells[J]. IEEE access, 2021, 9: 10228-10238.
[17] WU X G, YANG M L, ZHOU M L, et al.A novel high-gain DC-DC converter applied in fuel cell vehicles[J]. IEEE transactions on vehicular technology, 2020, 69(11): 12763-12774.

基金

国家自然科学基金(119075023); 特种重载机器人安徽省重点实验室开放基金(TZJQR008-2023)

PDF(2293 KB)

Accesses

Citation

Detail

段落导航
相关文章

/