计及碳交易与需求响应的微能源网双层优化模型

段新会, 黄嵘, 齐传杰, 陈博文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 310-318.

PDF(1951 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1951 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 310-318. DOI: 10.19912/j.0254-0096.tynxb.2022-1711

计及碳交易与需求响应的微能源网双层优化模型

  • 段新会1,2, 黄嵘1, 齐传杰1, 陈博文1
作者信息 +

BI-LEVEL OPTIMIZATION MODEL FOR MICRO ENERGY GRID CONSIDERING CARBON TRADING AND DEMAND RESPONSE

  • Duan Xinhui1,2, Huang Rong1, Qi Chuanjie1, Chen Bowen1
Author information +
文章历史 +

摘要

该文在微能源网的基础架构上,以全年总成本最低为目标函数,结合碳交易与需求响应构建微能源网双层优化配置模型。结合区域环境数据与年度典型日案例分析,优化模型得到最优规划配置以及在该配置下的各设备最优日运行出力调度情况,相比基础模型提高了可再生能源装机容量并获得了更高的碳排放权收益,通过需求响应调整用户侧灵活可控负荷,在保证可再生能源的消纳能力的前提下,有效节省了总成本。算例结果表明,该模型能够使微能源网在保证系统经济性的同时促进实现减碳目标,对MEG的前期规划设计有重要意义。

Abstract

The global greenhouse effect is becoming more and more serious, and the construction and operation optimization of the micro energy grid plays an important role in realizing the goal of carbon reduction. This paper constructs a bi-level optimization configuration model for micro energy grids based on the basic architecture of micro energy grids, combining carbon trading and demand response with the objective function of minimizing the annual total cost. Combined with regional environmental data and annual typical day case analysis, the optimization model obtains the optimal planning configuration and the optimal daily operating output scheduling of each equipment under the configuration, which increases the installed capacity of renewable energy to obtain higher carbon emission right income compared with the basic model, and adjusts the flexible and controllable load of the customer side through demand response, which saves the total cost effectively under the premise of ensuring the capacity of renewable energy consumption. The results of the arithmetic example show that the model can enable the micro energy grid to promote the realization of carbon reduction goals while ensuring the system economy, which is important for the pre-planning and design of MEG.

关键词

碳交易 / 需求响应 / 能源管理 / 微能源网 / 双层优化

Key words

carbon trading / demand response / energy management / micro energy grid / bi-level optimization

引用本文

导出引用
段新会, 黄嵘, 齐传杰, 陈博文. 计及碳交易与需求响应的微能源网双层优化模型[J]. 太阳能学报. 2024, 45(3): 310-318 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1711
Duan Xinhui, Huang Rong, Qi Chuanjie, Chen Bowen. BI-LEVEL OPTIMIZATION MODEL FOR MICRO ENERGY GRID CONSIDERING CARBON TRADING AND DEMAND RESPONSE[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 310-318 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1711
中图分类号: TM73   

参考文献

[1] ZHOU X Y, WEI X Y, LIN J, et al.Supply chain management under carbon taxes: a review and bibliometric analysis[J]. Omega, 2021, 98: 102295.
[2] 赵志耘, 曾文. “碳达峰、碳中和”目标下的科技情报服务问题解析[J]. 中国软科学, 2022(1): 1-6.
ZHAO Z Y, ZENG W.Analysis of scientific and technological intelligence service issues under the goal of “carbon peak and carbon neutrality”[J]. China soft science, 2022(1): 1-6.
[3] 孙元章, 张鹏成, 柯德平, 等. 碳达峰条件下能源互联网系统规划设计与优化运行[J]. 南方电网技术, 2022, 16(1): 1-13.
SUN Y Z, ZHANG P C, KE D P, et al.Planning, design and optimal operation of energy internet system under the condition of peak carbon dioxide emissions[J]. Southern power system technology, 2022, 16(1): 1-13.
[4] ESHRAGHI A, SALEHI G, HEIBATI S, et al.Developing operation of combined cooling, heat, and power system based on energy hub in a micro-energy grid: the application of energy storages[J]. Energy & environment, 2019, 30(8): 1356-1379.
[5] 仇知, 王蓓蓓, 贲树俊, 等. 计及不确定性的区域综合能源系统双层优化配置规划模型[J]. 电力自动化设备, 2019, 39(8): 176-185.
QIU Z, WANG B B, BEN S J, et al.Bi-level optimal configuration planning model of regional integrated energy system considering uncertainties[J]. Electric power automation equipment, 2019, 39(8): 176-185.
[6] 李利, 韩胜峰, 郑焕坤等. 考虑源-荷不确定性的微能源网区间规划方法[J/OL]. 电源学报: 1-26[2023-11-06].http://kns.cnki.net/kcms/detail/12.1420.TM.20220303.20 26.009.html.
LI L, HAN S F, ZHENG H K, et al. An interval planning method for micro energy networks considering renewable generation and demand uncertainty[J/OL]. Journal of power supply:1-26[2023-11-06].http://kns.cnki.net/kcms/detail/12.1420.TM.20220303. 2026.009.html.
[7] 赵学花, 何常根, 罗清雷, 等. 计及时间相关性的微能源网鲁棒规划方法[J]. 可再生能源, 2020, 38(3): 388-395.
ZHAO X H, HE C G, LUO Q L, et al.A robust planning method for micro energy grid considering spatiotemporal correlations of uncertainties[J]. Renewable energy resources, 2020, 38(3): 388-395.
[8] 张晓辉, 梁军雪, 赵翠妹, 等. 基于碳交易的含燃气机组的低碳电源规划[J]. 太阳能学报, 2020, 41(7): 92-98.
ZHANG X H, LIANG J X, ZHAO C M, et al.Research on low-carbon power planning with gas turbine units based on carbon transactions[J]. Acta energiae solaris sinica, 2020, 41(7): 92-98.
[9] 王振浩, 许京剑, 田春光, 等. 计及碳交易成本的含风电电力系统热电联合调度[J]. 太阳能学报, 2020, 41(12): 245-253.
WANG Z H, XU J J, TIAN C G, et al.Combined heat and power scheduling strategy considering carbon trading cost in wind power system[J]. Acta energiae solaris sinica, 2020, 41(12): 245-253.
[10] 方仍存, 杨洁, 周奎, 等. 计及全生命周期碳成本的园区综合能源系统优化规划方法[J]. 中国电力, 2022, 55(12): 135-146.
FANG R C, YANG J, ZHOU K, et al.An optimal planning method for park IES considering life cycle carbon cost[J]. Electric power, 2022, 55(12): 135-146.
[11] 曾博, 徐富强, 刘裕, 等. 考虑可再生能源与需求响应协同增效的能量枢纽多目标区间优化规划方法[J]. 中国电机工程学报, 2021, 41(21): 7212-7225.
ZENG B, XU F Q, LIU Y, et al.Multi-objective interval optimization approach for energy hub planning with consideration of renewable energy and demand response synergies[J]. Proceedings of the CSEE, 2021, 41(21): 7212-7225.
[12] 陈占鹏, 胡炎, 邰能灵, 等. 考虑灵活性与经济性的可再生能源电力系统源网联合规划[J]. 电力自动化设备, 2022, 42(9): 94-101.
CHEN Z P, HU Y, TAI N L, et al.Source-grid joint planning of renewable energy power system considering flexibility and economy[J]. Electric power automation equipment, 2022, 42(9): 94-101.
[13] 刘辉, 刘强, 张立, 等. 考虑需求侧协同响应的热电联供微网多目标规划[J]. 电力系统保护与控制, 2019, 47(5): 43-51.
LIU H, LIU Q, ZHANG L, et al.Multi-objective planning for combined heat and power microgrid considering demand side cooperative response[J]. Power system protection and control, 2019, 47(5): 43-51.
[14] 孙亮, 孙健, 张程, 等. 计及需求侧响应的微能源网日前调度及定量评估[J]. 太阳能学报, 2021, 42(9): 461-469.
SUN L, SUN J, ZHANG C, et al.Day-ahead schedule and quantitation evaluation of micro-energy network considered requirement-side response[J]. Acta energiae solaris sinica, 2021, 42(9): 461-469.
[15] 王成山, 洪博文, 郭力, 等. 冷热电联供微网优化调度通用建模方法[J]. 中国电机工程学报, 2013, 33(31): 26-33, 3.
WANG C S, HONG B W, GUO L, et al.A general modeling method for optimal dispatch of combined cooling, heating and power microgrid[J]. Proceedings of the CSEE, 2013, 33(31): 26-33, 3.
[16] 李德智, 龚桃荣. 用户侧多能互补微能源网的规划方法[J]. 中国电力, 2019, 52(11): 68-76.
LI D Z, GONG T R.Planning method of multi-energy complementary micro energy grid on user side[J]. Electric power, 2019, 52(11): 68-76.
[17] 曹宇, 汪可友, 石文辉, 等. 风-光-海水抽蓄联合发电系统的调度策略研究[J]. 电力系统保护与控制, 2018, 46(2): 16-23.
CAO Y, WANG K Y, SHI W H, et al.Study on dispatching strategies of a wind-solar-seawater pumped storage hybrid power system[J]. Power system protection and control, 2018, 46(2): 16-23.
[18] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165.
DIAO H B, LI P Q, LYU X X, et al.Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 151-165.
[19] 袁桂丽, 刘培德, 唐福斌, 等. 计及绿色电力证书与碳交易制度的“源-荷”协调优化调度[J]. 太阳能学报, 2022, 43(6): 190-195.
YUAN G L, LIU P D, TANG F B, et al.Source-load coordination optimal scheduling considering green power certificate and carbon trading mechanisms[J]. Acta energiae solaris sinica, 2022, 43(6): 190-195.
[20] 张伊宁. 考虑需求响应的能源互联网优化运行研究[D]. 杭州: 浙江大学, 2019.
ZHANG Y N.Research on optimal operation for energy internet considering demand response[D]. Hangzhou: Zhejiang University, 2019.
[21] 赵政嘉, 滕振山, 王志光, 等. 考虑工程设备差异性的微能源网设备综合优化配置[J]. 电力系统自动化, 2021, 45(23): 84-93.
ZHAO Z J, TENG Z S, WANG Z G, et al.Comprehensive optimal equipment configuration for micro energy network considering engineering differences[J]. Automation of electric power systems, 2021, 45(23): 84-93.
[22] 邢毓华, 师高翔. 含风光柴蓄的电动汽车充电站容量优化配置方法[J]. 电气传动, 2021, 51(7): 67-74.
XING Y H, SHI G X.Optimal capacity allocation method of electric vehicle charging station for micro-grid with PV, wind turbine, diesel generation and storage batteries[J]. Electric drive, 2021, 51(7): 67-74.

基金

中央引导地方科技发展资金项目(226Z2103G)

PDF(1951 KB)

Accesses

Citation

Detail

段落导航
相关文章

/