基于故障物理的风力机叶片可靠性仿真分析方法

葛新宇, 毕俊喜, 李海滨, 聂晓波, 刘江

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 29-40.

PDF(2225 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2225 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 29-40. DOI: 10.19912/j.0254-0096.tynxb.2022-1716

基于故障物理的风力机叶片可靠性仿真分析方法

  • 葛新宇1, 毕俊喜1,2,3, 李海滨4, 聂晓波1, 刘江1
作者信息 +

RELIABILITY SIMULATION ANALYSIS METHOD OF WIND TURBINE BLADES BASED ON FAULT PHYSICS

  • Ge Xinyu1, Bi Junxi1,2,3, Li Haibin4, Nie Xiaobo1, Liu Jiang1
Author information +
文章历史 +

摘要

提出一种基于故障物理的风力机叶片可靠性仿真分析方法,通过绘制任务剖面和载荷剖面图,将叶片材料、结构、环境条件和使用方式等参数加载到数值计算模型中,进行瞬态热力学、振动应力和多应力耦合分析。结果表明,最大应力和热集中主要发生在叶片根部,变形主要发生在叶片中部到叶尖这段区间。从故障原因和机理出发研究叶片的故障规律,运用FMECA(故障模式、影响和危害性分析)处理收集到的故障信息。将定性评价指标予以定量化,以此建立叶片危害性矩阵和FMECA表格,在失效模式下对高危性故障数据进行可靠性评估,为工程实际提供必要的理论支持。该方法相较于传统基于手册的可靠性分析方法精度更高,与研制、生产、维修和管理并行,通过不断更新迭代,以保证产品可靠性要求的实现,为风力机叶片的可靠性分析提供了新的思路和实施方法。

Abstract

This paper proposes a wind turbine blade reliability simulation and analysis method based on fault physics. By drawing task profiles and load profiles, the parameters such as blade material, structure, environmental conditions, and usage are loaded into a numerical calculation model for transient thermodynamics, vibration stress, and multi-stress coupling analysis. The results show that the maximum stress and heat concentration mainly occur at the root of the blade, and deformation mainly occurs in the middle to tip section of the blade. Starting from the causes and mechanisms of faults, the fault patterns of the blades are studied, and the collected fault information is processed using Failure Mode, Effects, and Criticality Analysis (FMECA). Qualitative assessment indicators are quantified to establish a blade hazard matrix and FMECA table, conducting reliability assessment of high-risk fault data under failure modes, providing necessary theoretical support for engineering practices. This method offers higher precision compared to traditional manual reliability analysis methods, running parallel with development, production, maintenance, and management, and ensuring the achievement of product reliability requirements through continuous updates and iterations, providing new ideas and implementation methods for the reliability analysis of wind turbine blades.

关键词

风力机叶片 / 可靠性分析 / 故障模式 / 流固耦合 / 故障物理

Key words

wind turbine blades / reliability analysis / failure modes / fluid structure interaction / physics of failure

引用本文

导出引用
葛新宇, 毕俊喜, 李海滨, 聂晓波, 刘江. 基于故障物理的风力机叶片可靠性仿真分析方法[J]. 太阳能学报. 2024, 45(3): 29-40 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1716
Ge Xinyu, Bi Junxi, Li Haibin, Nie Xiaobo, Liu Jiang. RELIABILITY SIMULATION ANALYSIS METHOD OF WIND TURBINE BLADES BASED ON FAULT PHYSICS[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 29-40 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1716
中图分类号: TK83   

参考文献

[1] GLOBAL WIND ENERGY COUNCIL. Global wind report 2022[EB/OL].[2022-04-04]. HTTPS://GWEC.NET/?S=GLOBAL+WIND+REPORT+2022.
[2] LOPEZ J C, KOLIOS A.Risk-based maintenance strategy selection for wind turbine composite blades[J]. Energy reports, 2022, 8: 5541-5561.
[3] 马航, 毕俊喜, 葛新宇, 等. 基于优化等寿命疲劳极限模型的风力机叶片寿命预测[J]. 太阳能学报, 2023, 44(10): 362-369.
MA H, BI J X, GE X Y, et al.Service life prediction of wind turbine blade based on optimizated constant life fatigue limit model[J]. Acta energiae solaris sinica, 2023, 44(10): 362-369.
[4] 靳交通, 邓航, 侯彬彬, 等. 风电叶片试验中褶皱的影响分析及修补方案的可靠性验证[J]. 机械设计与研究, 2020, 36(3): 56-59.
JIN J T, DENG H, HOU B B, et al.Influences analysis of wrinkles and reliability verification of repair method in the wind turbine blade test[J]. Machine design & research, 2020, 36(3): 56-59.
[5] 王宇晨, 成斌. 基于灰色FTA的风机叶片覆冰对机组运行可靠性影响研究[J]. 可再生能源, 2018, 36(4): 598-602.
WANG Y C, CHENG B.Research on the influence of fan blade icing on the operation reliability of unit based on grey FTA[J]. Renewable energy resources, 2018, 36(4): 598-602.
[6] 寇海霞, 安宗文, 马强. 基于性能退化数据的风力机叶片疲劳可靠性评估[J]. 太阳能学报, 2017, 38(11): 3174-3179.
KOU H X, AN Z W, MA Q.Fatigue reliability assessment of wind turbine blades based on the performance degradation data[J]. Acta energiae solaris sinica, 2017, 38(11): 3174-3179.
[7] 雷世英, 孙见忠, 刘赫. 涡轮叶片累积损伤指数模型及服役可靠性评估[J]. 航空学报, 2022, 43(3): 252-268.
LEI S Y, SUN J Z, LIU H.Cumulative damage index model and service reliability evaluation of turbine blade[J]. Acta aeronautica et astronautica sinica, 2022, 43(3): 252-268.
[8] 贾贝熙, 吕震宙, 雷婧宇. 涡轮冷却叶片寿命可靠性分析参数化仿真平台[J]. 航空学报, 2021, 42(12): 224-236.
JIA B X, LYU Z Z, LEI J Y.Parameterized simulation platform of turbine cooling film blade life reliability analysis[J]. Acta aeronautica et astronautica sinica, 2021, 42(12): 224-236.
[9] DUER S, PAŚ J, STAWOWY M, et al.Reliability testing of wind power plant devices with the use of an intelligent diagnostic system[J]. Energies, 2022, 15(10): 3583.
[10] SU H M, KAM T Y.Reliability analysis of composite wind turbine blades considering material degradation of blades[J]. Composite structures, 2020, 234: 111663.
[11] 朱顺鹏. 高温复杂结构的混合概率故障物理建模与疲劳寿命预测[D]. 成都: 电子科技大学, 2012.
ZHU S P.Research on hybrid probabilistic physics of failure modeling and fatigue life estimation of high-temperature structures[D]. Chengdu: University of Electronic Science and Technology of China, 2012.
[12] 刘勤, 姬广振, 曹璞琳, 等. 基于故障物理的复杂机械系统可靠性设计分析技术[J]. 兵工学报, 2022, 43(S1): 189-195.
LIU Q, JI G Z, CAO P L, et al.Reliability design and analysis methodfor complex mechanical system based on physics of failure[J]. Acta armamentarii, 2022, 43(S1): 189-195.
[13] LIU H W, ZHANG Z C, JIA H B, et al.A modified composite fatigue damage model considering stiffness evolution for wind turbine blades[J]. Composite structures, 2020, 233: 111736.
[14] KOSTANDYAN E E, SØRENSEN J D. Physics of failure as a basis for solder elements reliability assessment in wind turbines[J]. Reliability engineering & system safety, 2012, 108: 100-107.
[15] KACPRZYNSKI G J, SARLASHKAR A, ROEMER M J, et al.Predicting remaining life by fusing the physics of failure modeling with diagnostics[J]. JOM, 2004, 56(3): 29-35.
[16] 陈雪峰, 李继猛, 程航, 等. 风力发电机状态监测和故障诊断技术的研究与进展[J]. 机械工程学报, 2011, 47(9): 45-52.
CHEN X F, LI J M, CHENG H, et al.Research and application of condition monitoring and fault diagnosis technology in wind turbines[J]. Journal of mechanical engineering, 2011, 47(9): 45-52.
[17] MISHNAEVSKY L, BRANNER K, PETERSEN H N, et al.Materials for wind turbine blades: an overview[J]. Materials, 2017, 10(11): 1285.
[18] 李宏博, 李庆民, 郭子炘, 等. 基于纳秒脉冲反射定位的风机叶片引下线断裂故障检测方法[J]. 高电压技术, 2021, 47(3): 1100-1108.
LI H B, LI Q M, GUO Z X, et al.Broken fault detection method of down conductor in wind turbine blade based on nanosecond-pulse reflection and location[J]. High voltage engineering, 2021, 47(3): 1100-1108.
[19] WILEMAN A, PERINPANAYAGAM S, ASLAM S.Physics of failure (PoF) based lifetime prediction of power electronics at the printed circuit board level[J]. Applied sciences, 2021, 11(6): 2679.
[20] SHEN G X, SUN S G, ZHANG Y Z, et al.System failure analysis based on DEMATEL-ISM and FMECA[J]. Journal of Central South University, 2014, 21(12): 4518-4525.
[21] 李彦锋, 黄洪钟, 黄意贤. 太阳翼驱动机构的故障模式影响分析与时变可靠性研究[J]. 机械工程学报, 2020, 56(5): 108-115.
LI Y F, HUANG H Z, HUANG Y X.Failure mode and effects analysis and time varying reliability of solar array drive assembly[J]. Journal of mechanical engineering, 2020, 56(5): 108-115.
[22] 于海芳, 刘志强, 崔淑梅. 电动汽车电机驱动系统故障与失效模式分析[J]. 电力电子技术, 2011, 45(12): 69-71.
YU H F, LIU Z Q, CUI S M.Faults and fault modes analysis of electric vehicle drive system in electric vehicle[J]. Power electronics, 2011, 45(12): 69-71.
[23] 金春华. 基于故障物理的可靠性体系[J]. 制造业自动化, 2017, 39(5): 153-156.
JIN C H.Reliability system based on physics of failure method[J]. Manufacturing automation, 2017, 39(5): 153-156.
[24] SHUWA M, NGALA G M, EL-JUMMAH A M. Investigating the suitability of selected structural material for the blade of an horizontal axis wind turbine[J]. Arid zone journal of engineering, technology and environment, 2017, 13: 315-324.
[25] 叶康生, 袁驷. 壳体的有限元线法分析(Ⅰ): 基本理论[J]. 工程力学, 2002, 19(3): 20-29.
YE K S, YUAN S.Analysis of shells by finite element method of lines (Ⅰ): basic theory[J]. Engineering mechanics, 2002, 19(3): 20-29.
[26] YANG H, LIU H, YANG F, et al.Electromagnetic-thermal-stress coupling simulation for shore power cable with insulating crack air gap[J]. International journal of applied electromagnetics and mechanics, 2020, 62(3): 461-475.
[27] FINNEGAN W, JIANG Y D, DUMERGUE N, et al.Investigation and validation of numerical models for composite wind turbine blades[J]. Journal of marine science and engineering, 2021, 9(5): 525.
[28] 高建雄, 安宗文, 寇海霞. 随机恒幅载荷下结构疲劳累积损伤的概率模型[J]. 哈尔滨工程大学学报, 2017, 38(2): 263-268.
GAO J X, AN Z W, KOU H X.Structural probabilistic model of fatigue cumulative damage under uncertain cyclic load[J]. Journal of Harbin Engineering University, 2017, 38(2): 263-268.
[29] 刘震宇, 马小兵, 洪东跑, 等. 基于飞行剖面的作战飞机任务可靠性评估方法[J]. 北京航空航天大学学报, 2012, 38(1): 59-63.
LIU Z Y, MA X B, HONG D P, et al.Mission reliability assessment for battle-plane based on flight profile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(1): 59-63.
[30] 叶舟, 成欣, 周国龙, 等. 漂浮式风力机平台动态响应的优化方法探讨[J]. 振动与冲击, 2016, 35(3): 20-26.
YE Z, CHENG X, ZHOU G L, et al.Optimization method for dynamic responses of floating offshore wind turbines[J]. Journal of vibration and shock, 2016, 35(3): 20-26.
[31] HÜBNER F, BRÜCKNER A, DICKHUT T, et al. Low temperature fatigue crack propagation in toughened epoxy resins aimed for filament winding of type V composite pressure vessels[J]. Polymer testing, 2021, 102: 107323.
[32] 王荣国, 武卫莉, 谷万里. 复合材料概论[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
WANG R G, WU W L, GU W L.Introduction of composite materials[M]. Harbin: Harbin Institute of Technology Press, 2015.
[33] 肖力光, 赵洪凯. 复合材料[M]. 北京: 化学工业出版社, 2016.
XIAO L G, ZHAO H K.Composite material[M]. Beijing: Chemical Industry Press, 2016.
[34] 刘志远. 小型风力机叶片的优化设计及流固耦合分析[D]. 青岛: 青岛科技大学, 2020.
LIU Z Y.Optimal design and fluid-structure analysis of small wind turbine blades[D]. Qingdao: Qingdao University of Science & Technology, 2020.
[35] TIAN K Q, SONG L, CHEN Y Y, et al.Stress coupling analysis and failure damage evaluation of wind turbine blades during strong winds[J]. Energies, 2022, 15(4): 1339.
[36] 付慧. 小型风力机叶片建模及其双向耦合仿真分析[D]. 西安: 西安理工大学, 2018.
FU H.Modeling of small wind turbine blades and its bidirectional coupling simulation analysis[D]. Xi’an: Xi’an University of Technology, 2018.
[37] 杨超然. 基于WorkBench的风力机系统流固耦合特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
YANG C R.The characteristic study on fluid-structure interaction of wind turbine[D]. Harbin: Harbin Engineering University, 2020.
[38] 时强. 复合材料风电叶片流固耦合数值模拟[D]. 武汉: 武汉理工大学, 2013.
SHI Q.Modeling of composite wind turbine blade and load simulation[D]. Wuhan: Wuhan University of Technology, 2013.
[39] OZTURK S, FTHENAKIS V, FAULSTICH S.Failure modes, effects and criticality analysis for wind turbines considering climatic regions and comparing geared and direct drive wind turbines[J]. Energies, 2018, 11(9): 2317.
[40] ROBINSON C M E, PARAMASIVAM E S, TAYLOR E A, et al. Study and development of a methodology for the estimation of the risk and harm to persons from wind turbines[R]. Health and Safety Executive RR968 Research Report, 2013.
[41] MCGUGAN M, MISHNAEVSKY L Jr.Damage mechanism based approach to the structural health monitoring of wind turbine blades[J]. Coatings, 2020, 10(12): 1223.
[42] MISHNAEVSKY J L.Root causes and mechanisms of failure of wind turbine blades: overview[J]. Materials, 2022, 15(9): 2959.
[43] PRIETO R, KARLSSON T.A model to estimate the effect of variables causing erosion in wind turbine blades[J]. Wind energy, 2021, 24(9): 1031-1044.
[44] GONG J Q, LUO Y P, QIU Z W, et al.Determination of key components in automobile braking systems based on ABC classification and FMECA[J]. Journal of traffic and transportation engineering(English edition), 2022, 9(1): 69-77.
[45] GJB/Z1391—2006,故障模式、影响及危害性分析指南[S].
GJB/Z1391—2006, Guide to failure modes, effects and criticality analysis[S].
[46] 李志远, 刘思峰, 方志耕, 等. 贫信息背景下基于矩域灰点排序的灰FMECA模型[J]. 系统工程与电子技术, 2021, 43(12): 3732-3740.
LI Z Y, LIU S F, FANG Z G, et al.Grey FMECA model based on ordering of grey point in rectangular region under the background of poor information[J]. Systems engineering and electronics, 2021, 43(12): 3732-3740.
[47] JIAO J, DE X L, CHEN Z W, et al.Integrated circuit failure analysis and reliability prediction based on physics of failure[J]. Engineering failure analysis, 2019, 104: 714-726.
[48] 严晓东, 马翔, 郑荣跃, 等. 三参数威布尔分布参数估计方法比较[J]. 宁波大学学报(理工版), 2005, 18(3): 301-305.
YAN X D, MA X, ZHENG R Y, et al.Comparison of the parameters estimation methods for 3-parameter Weibull distribution[J]. Journal of Ningbo University (natural science & engineering edition), 2005, 18(3): 301-305.
[49] WAIS P.Two and three-parameter Weibull distribution in available wind power analysis[J]. Renewable energy, 2017, 103: 15-29.
[50] 李书明, 董成利, 黄燕晓. 基于威布尔的发动机涡轮叶片寿命可靠性评估[J]. 中国民航大学学报, 2008, 26(4): 14-17.
LI S M, DONG C L, HUANG Y X.Evaluate reliableness of aero-engine turbine blades based on Weibull-distributing[J]. Journal of Civil Aviation University of China, 2008, 26(4): 14-17.

基金

国家自然科学基金(52165019); 内蒙古自治区直属高校基本科研业务费项目(JY20220305)

PDF(2225 KB)

Accesses

Citation

Detail

段落导航
相关文章

/