针对太阳能热利用的时空不匹配问题,设计并制备一种放射形相变蓄热器,通过实验与数值模拟研究了蓄热器释热功率及相变材料固相率在释热过程中的响应特性,探讨了冷却工质流量、进水方式、翅片型式对释热性能的影响规律。研究结果表明:蓄热器的释热过程可划分为液态显热区间、潜热区间、固态显热区间3个阶段,潜热区间相变材料的潜热作用使得释热功率下降相对缓慢;冷却工质流量越大,释热功率下降速率越快,完全凝固时间越短;不同进水方式对换热效果影响不明显,但可改善蓄热器的换热均匀性;与平板翅片相比,放射形翅片各翅片单元间相变材料的导热更均匀,凝固时间缩短31%,提高了换热速率。
Abstract
Aiming at the problem of space-time mismatch of solar heat utilization, a kind of heat accumulator of phase change with radial fins is designed and fabricated. The characteristics of the heat discharge power of the heat accumulator and the solid fraction of the phase change material during the heat discharge process are studied experimentally and numerically. The effects of cooling water flow rate, water influent mode and fin type on the heat discharge performance are discussed. The results show that the heat discharge process of the heat accumulator can be divided into three stages: liquid sensible heat stage, latent heat stage and solid sensible heat stage. The latent heat release of phase change materials during the latent heat stage makes the heat discharge power decrease relatively slowly. The case with the higher flow rate of water behaves, the faster decrease rate of heat discharge power and the shorter solidification time. The effect of water influent mode on the heat transfer feature is not obvious, but it can improve the heat transfer uniformity of heat accumulator. Compared with the flat fin, the heat conduction of phase change material between each fin element for the radial fin is more uniform, the solidification time for that is reduced by 31%, and the heat transfer rate for that is improved.
关键词
相变 /
潜热 /
数值模拟 /
固相率 /
释热功率
Key words
phase change /
latent heat /
numerical simulation /
solid fraction /
heat discharge power
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HENG W L, WANG Z Y, WU Y L.Experimental study on phase change heat storage floor coupled with air source heat pump heating system in a classroom[J]. Energy and buildings, 2021, 251: 111352.
[2] 王冬晴, 庄云飞, 张滴滴, 等. 分级相变储放热系统在日光温室中的应用效果[J]. 太阳能学报, 2022, 43(12): 104-111.
WANG D Q, ZHUANG Y F, ZHANG D D, et al.Application effect of graded phase-change heat storage and release system in solar greenhouse[J]. Acta energiae solaris sinica, 2022, 43(12): 104-111.
[3] WANG F D, HOU R S.Numerical study of nano-particle composite paraffin phase change heat storage capsule[J]. Journal of physics: conference series, 2022, 2194(1): 012011.
[4] BAI H J.Research on optimization of tube structure of phase change heat storage device[J]. Journal of physics: conference series, 2022, 2166(1): 012040.
[5] 闫全英, 王晨羽, 梁高金, 等. 用添加剂强化有机相变材料导热性能的研究[J]. 太阳能学报, 2021, 42(9): 205-209.
YAN Q Y, WANG C Y, LIANG G J, et al.Study on enhancing thermal conductivity of organic phase change materials with additives[J]. Acta energiae solaris sinica, 2021, 42(9): 205-209.
[6] LI W, KONG C C.Numerical study on the thermal performance of a shell and tube phase change heat storage unit during melting process[J]. Advances in mechanical engineering, 2014, 6: 360283.
[7] 田扬, 赵明, 胡明禹, 等. 加肋旋转对相变蓄热器蓄热性能的影响及场协同分析[J]. 太阳能学报, 2021, 42(3): 395-400.
TIAN Y, ZHAO M, HU M Y, et al.Effect of ribbed rotation on heat storage performance of phase change thermal storage unit and field synergy analysis[J]. Acta energiae solaris sinica, 2021, 42(3): 395-400.
[8] 李永辉, 马素霞, 谢豪. 管翅式相变蓄热器性能的实验研究[J]. 可再生能源, 2014, 32(5): 574-578.
LI Y H, MA S X, XIE H.Experimental study on performance of tube-fin phase change storage[J]. Renewable energy resources, 2014, 32(5): 574-578.
[9] BHARADWAJ REDDY P, GUNASEKAR C, MHASKE A S, et al.Enhancement of thermal conductivity of PCM using filler graphite powder materials[J]. IOP conference series: materials science and engineering, 2018, 402: 012173.
[10] 杜文清, 费华, 顾庆军, 等. 癸酸-石蜡二元低共熔复合相变材料的制备及性能研究[J]. 太阳能学报, 2021, 42(7): 251-256.
DU W Q, FEI H, GU Q J, et al.Preparation and properties of capric acid-paraffin binary low eutectic composite phase change materials[J]. Acta energiae solaris sinica, 2021, 42(7): 251-256.
[11] TIAN Y, LIU X L, XU Q, et al.Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied thermal engineering, 2021, 194: 117104.
[12] 任智彬, 黄河, 高佳徐, 等. 三维套管式加肋相变蓄热单元的传热特性分析[J]. 动力工程学报, 2022, 42(5): 437-443.
REN Z B, HUANG H, GAO J X, et al.Analysis of heat transfer characteristics of three-dimensional tubular ribbed chase change heat storage unit[J]. Journal of Chinese Society of Power Engineering, 2022, 42(5): 437-443.
[13] 王君雷, 徐祥贵, 孙通, 等. 一种螺旋翅片式相变储热单元的储热优化模拟[J]. 储能科学与技术, 2021, 10(2): 514-522.
WANG J L, XU X G, SUN T, et al.Simulation of heat storage process in spiral fin phase change heat storage unit[J]. Energy storage science and technology, 2021, 10(2): 514-522.
[14] 郑章靖, 徐阳, 何雅玲. 梯级多孔介质强化管壳式相变储热器性能研究[J]. 工程热物理学报, 2019, 40(3): 605-611.
ZHENG Z J, XU Y, HE Y L.Study on the performance of a shell-and-tube latent-heat storage unit enhanced by porous medium with graded porosity[J]. Journal of engineering thermophysics, 2019, 40(3): 605-611.
[15] 韩广顺, 丁红胜, 童莉葛. 列管式相变储能换热器强化换热的数值研究[J]. 工程热物理学报, 2016, 37(9): 2012-2018.
HAN G S, DING H S, TONG L G.Numerical study on heat transfer enhancement of the cross-flow latent thermal energy storage heat exchanger[J]. Journal of engineering thermophysics, 2016, 37(9): 2012-2018.
[16] VOLLER V R, PRAKASH C.A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International journal of heat and mass transfer, 1987, 30(8): 1709-1719.
[17] GRAY D D, GIORGINI A.The validity of the boussinesq approximation for liquids and gases[J]. International journal of heat and mass transfer, 1976, 19(5): 545-551.
基金
山西省揭榜招标项目(202001101014); 山西省科技重大专项(202201090301001)