塑料内胆材料高压氢渗透实验装置研究

薄柯, 黄强华, 王骞, 花争立, 赵保頔, 吕蓉蓉

太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 487-491.

PDF(1848 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1848 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (12) : 487-491. DOI: 10.19912/j.0254-0096.tynxb.2022-1722

塑料内胆材料高压氢渗透实验装置研究

  • 薄柯1-3, 黄强华2,3, 王骞2,3, 花争立1, 赵保頔2,3, 吕蓉蓉2,3
作者信息 +

RESEARCH OF HIGH-PRESSURE HYDROGEN PERMEATION TESTING APPARATUS FOR PLASTIC LINER MATERIALS

  • Bo Ke1-3, Huang Qianghua2,3, Wang Qian2,3, Hua Zhengli1, Zhao Baodi2,3, Lyu Rongrong2,3
Author information +
文章历史 +

摘要

介绍自主研制的中国首套99 MPa氢渗透测试装置,解决氢气高压密封、微量氢渗透精准测量等关键技术难题,可实现工作压力0.1~99 MPa、温度-40~85℃下的非金属材料氢渗透测试,获得塑料内胆氢渗透系数。基于该装置,分别开展环境参数为(87.5 MPa,15 ℃),(80.5 MPa,55 ℃),(70 MPa,85 ℃)和(70 MPa,-40℃)下的材料氢渗透实验,验证该装置的可靠性。

Abstract

The hydrogen permeability of the materials under high pressure is an important parameter for the safety of the plastic liner hydrogen storage cylinder. This study introduces the first 99 MPa hydrogen permeability testing apparatus developed independently in China, which solves the key technical problems such as high-pressure hydrogen sealing and precise measurement of the trace amount of hydrogen. The hydrogen permeability test of non-metallic materials under the working pressure of 0.1 MPa-99 MPa and the temperature of -40 ℃-85 ℃ can be conducted using the apparatus. Using the testing apparatus, the hydrogen penetration tests of the plastic liner materials under four different working conditions, including (87.5 MPa,15 ℃), (80.5 MPa, 55 ℃), (70 MPa, 85 ℃) and (70 MPa, -40 ℃),were carried out, and the reliability of the testing apparatus was verified. This work provides test methods and technical support for the hydrogen permeation test of plastic liner materials and the development of domestic plastic liner materials.

关键词

储氢 / 高压 / 塑料内胆 / 塑料部件 / 气体扩散系数 / 实验装置

Key words

hydrogen storage / high-pressure / plastic liner / plastic parts / gaseous-diffusion coefficient / testing apparatus

引用本文

导出引用
薄柯, 黄强华, 王骞, 花争立, 赵保頔, 吕蓉蓉. 塑料内胆材料高压氢渗透实验装置研究[J]. 太阳能学报. 2023, 44(12): 487-491 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1722
Bo Ke, Huang Qianghua, Wang Qian, Hua Zhengli, Zhao Baodi, Lyu Rongrong. RESEARCH OF HIGH-PRESSURE HYDROGEN PERMEATION TESTING APPARATUS FOR PLASTIC LINER MATERIALS[J]. Acta Energiae Solaris Sinica. 2023, 44(12): 487-491 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1722
中图分类号: TQ053.2   

参考文献

[1] ADAMS P, BENGAOUER A, CARITEAU B, et al.Allowable hydrogen permeation rate from road vehicles[J]. International journal of hydrogen energy, 2011, 36(3): 2742-2749.
[2] SUN Y, LYU H, ZHOU W, et al.Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank[J]. International journal of hydrogen energy, 2020, 45(46): 24980-24990.
[3] DUNCAN B, URQUHART J, ROBERTS S.Review of measurement and modelling of permeation and diffusion in polymers[R]. UK: NPL Report, 2005: 1-73.
[4] FUJIWARA H, ONO H, ONOUE K, et al.High-pressure gaseous hydrogen permeation test method-property of polymeric materials for high-pressure hydrogen devices (1)[J]. International journal of hydrogen energy, 2020, 45(53): 29082-29094.
[5] BLANC-VANNET P, PAPIN P, WEBER M, et al.Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels[J]. International journal of hydrogen energy, 2019, 44(17): 8682-8691.
[6] SMITH B, ANOVITZ L.Lifecycle verification of polymeric storage liners[C]//Hydrogen Storage Tech Team Meeting, USCAR. Southfield, Michigan, 2013: 154-159.
[7] CSA/ANSI/CSA/AMCHMC 2-2019, Test methods for evaluating material compatibility in compressed hydrogen applications - polymers[S]. 2019.
[8] ISO 11114-5, Gas cylinders:compatibility of cylinder and valve materials with gas contents: part 5: test methods for evaluating plastic liners[S]. 2022.
[9] HUMPENODER J.Gas permeation of fibre reinforced plastics[J]. Cryogenics, 1998, 38(1): 143-147.
[10] BARRIE J A.Diffusion in polymers[C]//Polymers in a Marine Environment Conference, London, 1968.
[11] NAYLOR T D.Permeation properties[J]. Comprehensive polymer science, 1989, 2:643-668.
[12] KLOPFFER M H, FLACONNECHE B.Transport properdines of gases in polymers: bibliographic review[J]. Oil & gas science and technology, 2001, 56(3): 223-244.
[13] MATTEUCCI S, YAMPOLSKII Y, FREEMAN B D, et al.Transport of Gases and Vapors in Glassy and Rubbery Polymers[M]. John Wiley & Sons Ltd, 2015.
[14] BUDZIEN J L, MCCOY J D, WEINKAUF D H, et al.Solubility of gases in amorphous polyethylene[J]. Macromolecules, 1998, 31(10): 3368-3371.
[15] 郑津洋, 周池楼, 顾超华, 等. 高压氢气环境材料耐久性试验装置的研究[J]. 太阳能学报, 2015, 36(5): 1073-1080.
ZHENG J Y, ZHOU C L, GU C H, et al.Research of materials testing apparatus in high-pressure hydrogen[J]. Acta energiae solaris sinica, 2015, 36(5): 1073-1080.

基金

国家重点研发计划(2019YFB1504801)

PDF(1848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/