基于实际工况的燃料电池水气传输及相变规律研究

王来华, 代世勋, 曹爱红

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 260-268.

PDF(1859 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1859 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 260-268. DOI: 10.19912/j.0254-0096.tynxb.2022-1727

基于实际工况的燃料电池水气传输及相变规律研究

  • 王来华, 代世勋, 曹爱红
作者信息 +

RESEARCH ON FUEL CELL WATER AND GAS TRANSMISSION AND PHASE CHANGE LAW BASED ON ACTUAL WORKING CONDITIONS

  • Wang Laihua, Dai Shixun, Cao Aihong
Author information +
文章历史 +

摘要

利用CFD软件建立二维多相质子交换膜燃料电池单电池模型,对不同工况下质子交换膜燃料电池内部水气传输及相变过程进行仿真。在试验验证及元无关性验证的基础上,分析起步工况、加速工况、急停工况下的质子交换膜燃料电池内部状态变化。研究结果表明:当电流密度为1500 mA/cm2时,质子交换膜燃料电池功率密度达到最大值654.9 mW/cm2;起步工况下,质子交换膜燃料电池内部反应会在达到额定功率10 s后逐渐达到平衡;加速工况下,三次方加速模式的最低液态水饱和度界面、水-气相界面的持续时间最长;急停工况下,质子交换膜燃料电池的突然停机会使得其仍保持与停机前相近的状态。

Abstract

The dynamic load of proton exchange membrane fuel cell (PEMFC) is one of the most challenging issue for fuel cell based vehicle application. It is critical to investigate the dynamic operation mechanism for appropriate PEMFC control. This study proposes a two-dimensional multi-phase PEMFC single-cell model for the simulation of internal water and gas transmission and phase transition process under different operations. Based on the test verification and grid-independent verification, the internal state changes of PEMFC under starting conditions, acceleration conditions, and emergency stop conditions are analyzed. The results indicate that the maximum PEMFC power density reaches 654.9 mW/cm2 with current density 1500 mA/cm2. The PEMFC internal reaction will gradually reach balance after 10 s under starting conditions. Under the acceleration condition, the lowest water saturation interface and the water-gas phase interface have the longest duration in the cubic acceleration mode. Under the emergency stop conditions, the PEMFC remains similar to before the shutdown. This study guides the precise control of PEMFC in real applications.

关键词

质子交换膜燃料电池 / 相变 / 饱和度 / 二维多相模型 / 水气传输 / 水-气相界面

Key words

PEMFC / phase change / saturation / two-dimensional multi-phase model / water-gas transmission / water-gas phase interface

引用本文

导出引用
王来华, 代世勋, 曹爱红. 基于实际工况的燃料电池水气传输及相变规律研究[J]. 太阳能学报. 2024, 45(3): 260-268 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1727
Wang Laihua, Dai Shixun, Cao Aihong. RESEARCH ON FUEL CELL WATER AND GAS TRANSMISSION AND PHASE CHANGE LAW BASED ON ACTUAL WORKING CONDITIONS[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 260-268 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1727
中图分类号: TM911.4   

参考文献

[1] CHEN S Q, ZHANG G X, ZHU J G, et al.Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging[J]. Applied thermal engineering, 2022, 211: 118503.
[2] TIMURKUTLUK B, CHOWDHURY M Z.Numerical investigation of convergent and divergent parallel flow fields for PEMFCs[J]. Fuel cells, 2018, 18(4): 441-448.
[3] RAMIN F, SADEGHIFAR H, TORKAVANNEJAD A.Flow field plates with trap-shape channels to enhance power density of polymer electrolyte membrane fuel cells[J]. International journal of heat and mass transfer, 2019, 129: 1151-1160.
[4] 吴玉厚, 田扬, 孙红, 等. 不同蛇形流场下的直接甲醇燃料电池性能及阻抗分析[J]. 沈阳建筑大学学报(自然科学版), 2013, 29(2): 355-360.
WU Y H, TIAN Y, SUN H, et al.Performance and impedance analysis of direct methanol fuel cell under different serpentine flow field[J]. Journal of Shenyang Jianzhu University (natural science), 2013, 29(2): 355-360.
[5] 罗来明, 陈思安, 王海宁, 等. 高温聚合物电解质膜燃料电池大尺寸(200 cm2)多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985.
LUO L M, CHEN S A, WANG H N, et al.Simulation and optimization of large-scale(200 cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells[J]. Chemical industry and engineering progress, 2021, 40(9): 4975-4985.
[6] 陈士忠, 罗鑫, 夏忠贤, 等. 进气速度对交指HT-PEM燃料电池性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(3): 529-536.
CHEN S Z, LUO X, XIA Z X, et al.Simulation of effects of intake air velocity on the performance of interdigital HT-PEM fuel cells[J]. Journal of Shenyang Jianzhu University (natural science), 2017, 33(3): 529-536.
[7] CARRAL C, MÉLÉ P. A numerical analysis of PEMFC stack assembly through a 3D finite element model[J]. International journal of hydrogen energy, 2014, 39(9): 4516-4530.
[8] GHADHBAN S A, ALAWEE W H, DHAHAD H A.Study effects of bio-inspired flow filed design on polymer electrolyte membrane fuel cell performance[J]. Case studies in thermal engineering, 2021, 24: 100841.
[9] ASADZADE M, SHAMLOO A.Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell[J]. Intemational journal of energy research, 2017, 41(12): 1730-1739.
[10] ZHU W C, ZHENG M G.Radial flow field of circular bipolar plate for proton exchange membrane fuel cells[J]. International journal of heat and technology, 2019, 37(3): 733-740.
[11] SOLATI A, NASIRI B, MOHAMMADI-AHMAR A, et al.Numerical investigation of the effect of different layers configurations on the performance of radial PEM fuel cells[J]. Renewable energy, 2019, 143: 1877-1889.
[12] 孙峰, 苏丹丹, 殷宇捷, 等. PEMFC翅脉流道传质及输出性能分析[J]. 太阳能学报, 2022, 43(6): 414-419.
SUN F, SU D D, YIN Y J, et al.Mass transfer and output performance analysis of wing vein flow channel in PEMFC[J]. Acta energiae solaris sinica, 2022, 43(6): 414-419.
[13] 张宁, 张小娟. 渐变型流场对PEMFC传质和性能的影响[J]. 电源技术, 2017, 41(3): 395-398.
ZHANG N, ZHANG X J.Effects of gradually-varied flow field on fuel cell mass transfer and performance[J]. Chinese journal of power sources, 2017, 41(3): 395-398.
[14] 苏宇静, 鲁聪达, 吴明格. 基于树状分形流场的PEMFC传质性能分析[J]. 电源技术, 2016, 40(7): 1367-1371.
SU Y J, LU C D, WU M G.Study on mass transfer performance of PEMFC based on fractal tree-like flow field[J]. Chinese journal of power sources, 2016, 40(7): 1367-1371.
[15] KIM Y B.Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells[J]. International journal of energy research, 2012, 36(4): 509-522.
[16] CHEN J X, XU P H, LU J, et al.A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model[J]. Energy, 2021, 218: 119543.
[17] YUAN H, DAI H F, WEI X Z, et al.Internal polarization process revelation of electrochemical impedance spectroscopy of proton exchange membrane fuel cell by an impedance dimension model and distribution of relaxation times[J]. Chemical engineering journal, 2021, 418: 129358.
[18] SHI L, XU S C, LIU J L.Influences of assembly pressure and flow channel size on performances of proton exchange membrane fuel cells based on a multi-model[J]. International journal of hydrogen energy, 2022, 47(12): 7902-7914.
[19] HAN J Q, FENG J M, PENG X Y.Phase change characteristics and their effect on the performance of hydrogen recirculation ejectors for PEMFC systems[J]. International journal of hydrogen energy, 2022, 47(2): 1144-1156.
[20] 曹爱红, 王来华, 代世勋. 基于装配力的燃料电池性能数值解析[J]. 电源技术, 2021, 45(7): 844-847, 801.
CAO A H, WANG L H, DAI S X.Study on performance of fuel cell based on assembly force[J]. Chinese journal of power sources, 2021, 45(7): 844-847, 801.

PDF(1859 KB)

Accesses

Citation

Detail

段落导航
相关文章

/