质子交换膜燃料电池经过长期运行后,其部件(弹性垫片、极板等)会发生损伤,并产生金属离子污染物(如Ca2+、 Mg2+),这将影响燃料电池长期运行的稳定性和耐久性。通过向燃料电池阴极空气流中添加不同浓度(100、300和500 mg/L)的Mg2+溶液,研究了极化曲线以及电化学阻抗谱,分析了阴极Mg2+污染物对燃料电池电化学性能及电化学阻抗的影响。极化曲线实验结果表明3种浓度梯度的阴极Mg2+污染物均对燃料电池的电化学性能有明显负面影响,污染后的燃料电池的电流密度出现下降,且下降程度与阴极Mg2+污染物浓度和污染时间呈正相关。极化曲线理论分析结果表明:3种浓度梯度的阴极Mg2+污染物均显著影响质子交换膜的渗透性并增大质子交换膜对氢离子的阻抗,且污染时间越长,质子交换膜性能恶化越严重。电化学阻抗谱分析结果表明:3种浓度梯度的阴极Mg2+污染物均会增大质子交换膜对氢离子的阻抗以及阴极法拉第电阻,且质子交换膜对氢离子的阻抗随污染时间增加而增大;阴极双电层结构受这3种浓度梯度的阴极Mg2+污染物影响不明显。
Abstract
During long-term operation, the components (such as bipolar plates and elastomeric gaskets)of proton exchange membrane fuel cell (PEMFC) may degrade and produce the metal ion contaminants (e.g. Ca2+, Mg2+). This could affect the long-term stability and durability of the PEMFC for its applications. In this paper, polarization curves and electrochemical impedance spectroscopy (EIS) were investigated experimentally by introducing the various concentration (i.e. 100 mg/L, 300 mg/L and 500 mg/L) Mg2+ solutions into the cathode air stream of the PEMFC, and then the effects of Mg2+ contaminant at the cathode on the PEMFC electrochemical performance and electrochemical impedance were analyzed. The polarization curve results show that the cathodic Mg2+ contaminant with three levels of concentrations had significantly negative effects on the electrochemical performance of the fuel cell, the current density of the fuel cell contaminated by Mg2+ decreased, and the current density decreased more drastically with the increase of Mg2+ concentration and contamination time. The theoretical analysis results of polarization curves indicate that the cathodic Mg2+ contaminant with three levels of concentrations could affect the permeability of the proton exchange membrane and increase the H+ impedance in the proton exchange membrane, and the performance of the proton exchange membrane deteriorated more severely with the increase of contamination time. The EIS results show that the cathodic Mg2+ contaminant with three levels of concentrations could increase the H+ impedance in the proton exchange membrane and the cathode Faraday resistance, and the H+ impedance in the proton exchange membrane and cathode Faraday resistance increase with the increase of contamination time, and the cathode electric double-layers are not significantly affected by the Mg2+ contaminant at the cathode in this work.
关键词
质子交换膜燃料电池 /
镁离子 /
电化学阻抗谱 /
电化学性能
Key words
proton exchange membrane fuel cells /
magnesium ions /
electrochemical impedance spectroscopy /
electrochemical performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KIENITZ B, PIVOVAR B, ZAWODZINSKI T, et al.Cationic contamination effects on polymer electrolyte membrane fuel cell performance[J]. Journal of the Electrochemical Society, 2011, 158(9): B1175.
[2] REN Y J, ANISUR M R, QIU W, et al.Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: electrochemical impedance spectroscopy study[J]. Journal of power sources, 2017, 362: 366-372.
[3] CHENG X, SHI Z, GLASS N, et al.A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation[J]. Journal of power sources, 2007, 165(2): 739-756.
[4] MO J K, STEEN S, KANG Z Y, et al.Study on corrosion migrations within catalyst-coated membranes of proton exchange membrane electrolyzer cells[J]. International journal of hydrogen energy, 2017, 42(44): 27343-27349.
[5] TAN J Z, CHAO Y J, YANG M, et al.Chemical and mechanical stability of a silicone gasket material exposed to PEM fuel cell environment[J]. International journal of hydrogen energy, 2011, 36(2): 1846-1852.
[6] 侯中军, 衣宝廉. 质子交换膜燃料电池性能衰减研究进展[J]. 电源技术, 2005(7): 482-487.
HOU Z J, YI B L.Researches on the deterioration of the PEMFCs’ performance in recent years[J]. Chinese journal of power sources, 2005(7): 482-487.
[7] QI J, GE J J, UDDIN M A, et al.Evaluation of cathode contamination with Ca2+ in proton exchange membrane fuel cells[J]. Electrochimica acta, 2018, 259: 510-516.
[8] SULEK M, ADAMS J, KABERLINE S, et al.In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance[J]. Journal of power sources, 2011, 196(21): 8967-8972.
[9] ZHU J Y, TAN J Z, PAN Q, et al.Effects of Mg2+ contamination on the performance of proton exchange membrane fuel cell[J]. Energy, 2019, 189: 116135.
[10] 刘璿, 郭航, 叶芳, 等. 铜离子对PEMFC膜电极性能影响及恢复方法[J]. 北京工业大学学报, 2006, 32(12): 1111-1115.
LIU X, GUO H, YE F, et al.Effect of copper ion on MEA and performance recovery of MEA of PEMFC[J]. Journal of Beijing University of Technology, 2006, 32(12): 1111-1115.
[11] 张晓维, 奚天鹏, 谈金祝, 等. Ca2+对质子交换膜燃料电池性能的影响[J]. 南京工业大学学报(自然科学版), 2012, 34(3): 116-119.
ZHANG X W, XI T P, TAN J Z, et al.Effect of calcium ion on proton exchange membrane fuel cell performance[J]. Journal of Nanjing University of Technology (natural science edition), 2012, 34(3): 116-119.
[12] 李朋, 谈金祝, 韩雪梅, 等. 金属钙离子浓度对PEMFC性能影响研究[J]. 太阳能学报, 2017, 38(6): 1601-1605.
LI P, TAN J Z, HAN X M, et al.Effect of metallic calcium ion concentration on performance of PEMFC[J]. Acta energiae solaris sinica, 2017, 38(6): 1601-1605.
[13] 潘清, 谈金祝, 冯秋月, 等. 钙离子对质子交换膜燃料电池性能衰减机理研究[J]. 太阳能学报, 2020, 41(7): 73-79.
PAN Q, TAN J Z, FENG Q Y, et al.Study on degradation mechanism of proton exchange membrane fuel cell performance by presence of Ca2+[J]. Acta energiae solaris sinica, 2020, 41(7): 73-79.
[14] MIKKOLA M S, ROCKWARD T, URIBE F A, et al.The effect of NaCl in the cathode air stream on PEMFC performance[J]. Fuel cells, 2007, 7(2): 153-158.
[15] 温小飞, 周胜男, 詹志刚, 等. PEMFC氯化钠中毒等效欧姆极化模型的构建与仿真[J]. 电源技术, 2021, 45(6): 744-746, 785.
WEN X F, ZHOU S N, ZHAN Z G, et al.Equivalent ohmic polarization model for PEMFC based on sodium chloride poisoning[J]. Chinese journal of power sources, 2021, 45(6): 744-746, 785.
[16] YUK S, LEE D W, SONG K Y, et al.Detrimental effect of Ce4+ ion on the Pt/C catalyst in polymer electrolyte membrane fuel cells[J]. Journal of power sources, 2020, 448: 227447.
[17] 朱京宇, 谈金祝, 潘清, 等. 镁离子对质子交换膜性能的影响[J]. 高分子材料科学与工程, 2020, 36(9): 144-149.
ZHU J Y, TAN J Z, PAN Q, et al.Effect of magnesium ions on performance of proton exchange membranes[J]. Polymer materials science & engineering, 2020, 36(9): 144-149.
[18] 弗朗诺·巴尔伯. PEM燃料电池: 理论与实践(第2版)[M]. 李东红,译. 北京: 机械工业出版社, 2016: 22-23.
FRANO B.PEM fuel cells: theory and practice (second edition)[M]. Translator: LI D H. Beijing: China Machine Press, 2016: 22-23.