为提高太阳能利用率和热泵热力学性能,将真空管集热器、热泵和填充床等结合,提出一种级联型潜热储存耦合热泵系统用于建筑供热。针对太阳能集热及室外温度等条件,将太阳能蓄热和室外空气作为热泵的热源进行系统集成设计。在FLUENT和EES中分别建立填充床和热泵的热力学模型,并分析填充床的换热流体流量、放热温度和用户回水温度对系统热力性能的影响。结果表明,填充床流体流量从0.05 kg/s增至0.07 kg/s时,热泵系统整体平均性能指数下降0.16;填充床作为热源的放热温度升高20 ℃时,填充床供热增加74269 kJ,有效放热率下降21.9%;当用户回水温度升高10 ℃时,热泵系统整体平均性能指数下降0.19,有效放热率下降16.2%。
Abstract
To enhance the utilization of solar energy and optimize the thermodynamic performance of heat pumps, a cascaded latent heat storage coupled heat pump system is proposed for building heating. The system integrates a vacuum tube collector, a heat pump, and a packed-bed and is designed to collect solar energy while taking into account atmospheric temperature, using outdoor air as the heat source for the heat pump. In this study, thermodynamic models of the packed-bed and heat pump components are developed using the FLUENT and EES software respectively. The thermal performance of the system is analyzed with regards to the flow rate, exothermic temperature of the packed-bed, and user return water temperature. Results indicate that increasing the flow rate of the packed-bed from 0.05 kg/s to 0.07 kg/s results in a 0.16 decrease in the overall average performance of the heat pump. When the exothermic source temperature of the packed-bed is raised by 20 ℃, the heat supply of the packed bed increases by 74269 kJ, but the effective heat release rate decreases by 21.9%. Furthermore, when the user return water temperature is increased by 10 ℃, the overall average performance of the heat pump decreases by 0.19, and the effective heat release rate declines by 16.2%.
关键词
供热 /
相变材料 /
热泵 /
真空管集热器 /
热力性能
Key words
heating /
phase change materials /
heat pump systems /
solar evacuated tube collector /
thermal performance
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ERMEL C, BIANCHI M V A, CARDOSO A P, et al. Thermal storage integrated into air-source heat pumps to leverage building electrification: a systematic literature review[J]. Applied thermal engineering, 2022, 215: 118975.
[2] 刘利华, 唐黎明, 陈光明, 等. 新型压缩吸收耦合的太阳能热泵系统实验研究[J]. 太阳能学报, 2020, 41(4): 129-136.
LIU L H, TANG L M, CHEN G M, et al.Experiment research of a new compression heat pump system coupled with solar absorption[J]. Acta energiae solaris sinica, 2020, 41(4): 129-136.
[3] 陈永翀, 冯彩梅, 刘勇. 双碳背景下中国储新比的发展趋势[J]. 能源, 2021(8): 41-45.
CHEN Y C, FENG C M, LIU Y.The development trend of China’s reserve-to-fresh ratio under the background of double carbon[J]. Energy, 2021(8): 41-45.
[4] NARULA K, DE OLIVEIRA FILHO F, CHAMBERS J, et al. Simulation and comparative assessment of heating systems with tank thermal energy storage-a swiss case study[J]. Journal of energy storage, 2020, 32: 101810.
[5] WANG Y B, QUAN Z H, ZHAO Y H, et al.Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage[J]. Applied energy, 2022, 324: 119706.
[6] 王登甲, 祁婷, 陈耀文, 等. 吸收式热泵驱动太阳能集热场耦合集中供热性能研究[J]. 太阳能学报, 2021, 42(11): 129-136.
WANG D J, QI T, CHEN Y W, et al.Study on coupled heating performance of absorption heat pump driving solar collector system[J]. Acta energiae solaris sinica, 2021, 42(11): 129-136.
[7] JIN X, ZHANG H H, HUANG G S, et al.Experimental investigation on the dynamic thermal performance of the parallel solar-assisted air-source heat pump latent heat thermal energy storage system[J]. Renewable energy, 2021, 180: 637-657.
[8] HAN Z W, BAI C G, MA X, et al.Study on the performance of solar-assisted transcritical CO2 heat pump system with phase change energy storage suitable for rural houses[J]. Solar energy, 2018, 174: 45-54.
[9] WANG W, SHUAI Y, QIU J, et al.Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors[J]. Renewable energy, 2022, 183: 251-266.
[10] YU M, ZHANG C W, FAN Y B, et al.Performance study of phase change charging/discharging processes of condensing heat storage in cold regions based on a mathematical model[J]. Applied thermal engineering, 2021, 182: 115805.
[11] TSALIKIS G, MARTINOPOULOS G.Solar energy systems potential for nearly net zero energy residential buildings[J]. Solar energy, 2015, 115: 743-756.
[12] WATANABE T, KANZAWA A.Second law optimization of a latent heat storage system with PCMS having different melting points[J]. Heat recovery systems and CHP, 1995, 15(7): 641-653.
[13] VOLLER V R, CROSS M, MARKATOS N C.An enthalpy method for convection/diffusion phase change[J]. International journal for numerical methods in engineering, 1987, 24(1): 271-284.
[14] WANG Y, YANG X, XIONG T, et al.Performance evaluation approach for solar heat storage systems using phase change material[J]. Energy and buildings, 2017, 155: 115-127.
[15] SUN B Z, LIU Z Z, JI X, et al.Thermal energy storage characteristics of packed bed encapsulating spherical capsules with composite phase change materials[J]. Applied thermal engineering, 2022, 201: 117659.
[16] YU M, LI S, ZHANG X J, et al.Techno-economic analysis of air source heat pump combined with latent thermal energy storage applied for space heating in China[J]. Applied thermal engineering, 2021, 185: 116434.
[17] 张仲彬, 朱长林, 孟雨欣. 相变胶囊无序堆积级联布置蓄热特性数值分析[J]. 中国电机工程学报, 2021, 41(16): 5634-5643.
ZHANG Z B, ZHU C L, MENG Y X.Numerical analysis of heat storage characteristics of cascade disorderly packed of phase change capsules[J]. Proceedings of the CSEE, 2021, 41(16): 5634-5643.
[18] 翟有蓉, 刘雄, 韩希铭, 等. 自耦合相变蓄热热泵系统适应性研究[J]. 制冷与空调, 2021, 21(12): 8-13, 35.
ZHAI Y R, LIU X, HAN X M, et al.Study on adaptability of self-coupling phase change heat storage heat pump system[J]. Refrigeration and air-conditioning, 2021, 21(12): 8-13, 35.