以大功率储能飞轮转子系统为研究对象,探究电机转子存在初始静偏心时飞轮动力学特性的变化规律。首先使用能量法求出电机转子不平衡磁拉力(UMP)与转子偏心位移之间的关系,采用Timoshenko梁单元模型建立包含UMP的飞轮转子机电耦合动力学模型,计算分析电机转子初始偏心量和偏心方向对飞轮稳态和瞬态特性的影响,得出以下结论:随着偏心量的增大,上轴承处轴心轨迹出现嵌套圆环,频谱出现3种频率成分且幅值增大,升速响应曲线共振峰的峰值增大,对应转速减小;当偏心方向改变且旋转一周时,转频等成分的幅值、升速响应曲线共振峰值产生明显的周期规律变化。
Abstract
A high-power energy storage flywheel rotor system is taken as the research object to explore the dynamic characteristics of the flywheel rotor when the motor has initial static eccentricity. Firstly, the relationship between the unbalanced magnetic pull (UMP) and the eccentric displacement of the motor rotor is calculated using energy method. And then the electromechanical coupling dynamic model of the flywheel rotor considering UMP is established using the Timoshenko beam element model. Finally, the effects of the magnitude and direction of the eccentricity on steady and transient state dynamic characteristics of the flywheel rotor system are calculated and analyzed. The following conclusions are drawn that with the increase of eccentricity, a nested ring appears in the axial trajectory at the upper bearing, three frequency components appear in the spectrum diagram and their amplitudes increase, and the formant values of the acceleration response curve increase, while the critical speeds decrease. When the eccentric direction changes and the rotor rotates one circle, the amplitude of frequency components such as rotation frequency, the formant values of the acceleration response curve have obvious periodic changes.
关键词
飞轮 /
转子 /
储能 /
动力学 /
初始静偏心 /
不平衡磁拉力 /
机电耦合
Key words
flywheels /
rotors /
energy storage /
dynamics /
initial static eccentricity /
unbalanced magnetic pull /
electromechanical coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PERERS R, LUNDIN U, LEIJON M.Saturation effects on unbalanced magnetic pull in a hydroelectric generator with an eccentric rotor[J]. IEEE transactions on magnetics, 2007, 43(10): 3884-3890.
[2] 白晖宇, 荆建平, 孟光. 电机不平衡磁拉力研究现状与展望[J]. 噪声与振动控制, 2009, 29(6): 5-7, 33.
BAI H Y, JING J P, MENG G.Survey and outlook on the research of the unbalanced magnetic pull in the motors[J]. Noise and vibration control, 2009, 29(6): 5-7, 33.
[3] 张霄霆, 张炳义, 曹永鹏. 偏心状态下的轴向磁通永磁电机受力分析[J]. 电工技术学报, 2020, 35(增刊1): 110-116.
ZHANG X T, ZHANG B Y, CAO Y P.Force analyze of axial magnetic flux permanent magnet motor under eccentricity condition[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 110-116.
[4] 左曙光, 张国辉, 吴旭东, 等. 倾斜偏心下轮毂永磁同步电机电磁力分析[J]. 浙江大学学报(工学版), 2015, 49(5): 901-907.
ZUO S G, ZHANG G H, WU X D, et al.Analysis of electromagnetic force in wheel-drive PMSM with stator incline eccentricity[J]. Journal of Zhejiang University (engineering science), 2015, 49(5): 901-907.
[5] 李扬, 郝亮亮, 孙宇光, 等. 隐极同步发电机转子匝间短路时转子不平衡磁拉力特征分析[J]. 电力系统自动化, 2016, 40(3): 81-89.
LI Y, HAO L L, SUN Y G, et al.Characteristic analysis of unbalanced magnetic pull caused by non-salient pole synchronous generator rotor inter-turn short circuit fault[J]. Automation of electric power systems, 2016, 40(3): 81-89.
[6] 戈宝军, 芦浩. 定子绕组匝间短路时转子不平衡径向磁拉力[J]. 电力系统及其自动化学报, 2017, 29(2): 112-120.
GE B J, LU H.Unbalanced radial electromagnetic force on rotor under inter-turn short circuit faults of stator winding[J]. Proceedings of the CSU-EPSA, 2017, 29(2): 112-120.
[7] DORRELL D G.Sources and characteristics of unbalanced magnetic pull in three-phase cage induction motors with axial-varying rotor eccentricity[J]. IEEE transactions on industry applications, 2011, 47(1): 12-24.
[8] 喻丽华, 谢庆生, 李少波, 等. 计及不平衡磁拉力的高速空气静压电主轴动力学分析[J]. 机械科学与技术, 2014, 33(6): 792-795.
YU L H, XIE Q S, LI S B, et al.The analysis of the dynamics of high speed motorized spindle with the externally pressurized gas bearing considering unbalanced magnetic pull[J]. Mechanical science and technology for aerospace engineering, 2014, 33(6): 792-795.
[9] KIM H, NERG J, CHOUDHURY T, et al.Rotordynamic simulation method of induction motors including the effects of unbalanced magnetic pull[J]. IEEE access, 2020, 8: 21631-21643.
[10] 姚大坤, 邹经湘, 黄文虎, 等. 水轮发电机转子偏心引起的非线性电磁振动[J]. 应用力学学报, 23(3): 334-337, 505.
YAO D K, ZOU J X, HUANG W H, et al.Nonlinear electromagnetic vibrations in hydro-generators with eccentric rotors[J]. Chinese journal of applied mechanics, 23(3): 334-337, 505.
[11] 刘清, 李琨, 王肖锋, 等. 不平衡磁拉力作用下电机柔性转子非线性振动研究[J]. 中国机械工程, 2014, 25(18): 2446-2450.
LIU Q, LI K, WANG X F, et al.Nonlinear vibration behavior of flexible rotors under unbalanced magnetic pull[J]. China mechanical engineering, 2014, 25(18): 2446-2450.
[12] 周生通, 朱经纬, 肖乾, 等. 初始静偏心与重力载荷对动车牵引电机转子轴心轨迹的影响[J]. 机械工程学报, 2020, 56(17): 145-154.
ZHOU S T, ZHU J W, XIAO Q, et al.Initial static eccentricity and gravity load on rotor orbit of EMU traction motor[J]. Journal of mechanical engineering, 2020, 56(17): 145-154.
[13] GUO S J, BAI C Q.Coupling effect of unbalanced magnetic pull and ball bearing on nonlinear vibration of motor rotor system[J]. Journal of vibration and control, 2022, 28(5/6): 665-676.
[14] CHEN G D, CHEN Y J, LU Q, et al.Multi-physics fields based nonlinear dynamic behavior analysis of air bearing motorized spindle[J]. Micromachines, 2020, 11(8): 723.
[15] 周传迪, 柳亦兵, 朱万程, 等. 基于有限单元和模型降阶的储能飞轮转子动力学建模及分析[J]. 动力工程学报, 2022, 42(2): 182-189.
ZHOU C D, LIU Y B, ZHU W C, et al.Dynamic modeling and analysis of energy storage flywheel rotor based on finite element and model reduction[J]. Journal of Chinese Society of Power Engineering, 2022, 42(2): 182-189.
[16] FRISWELL M I, PENNY J E T, GARVEY S D, et al. Dynamics of rotating machines[M]. Cambridge: Cambridge University Press, 2010.