基于CLD模型的风电叶片延寿区间估计

曾世龙, 马强, 白学宗, 马辉东, 安宗文

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 41-45.

PDF(1307 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1307 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 41-45. DOI: 10.19912/j.0254-0096.tynxb.2022-1739

基于CLD模型的风电叶片延寿区间估计

  • 曾世龙1,2, 马强1, 白学宗1, 马辉东1, 安宗文1
作者信息 +

ESTIMATION OF LIFE EXTENSION SPAN OF WIND TURBINE BLADES BASED ON CLD MODEL

  • Zeng Shilong1,2, Ma Qiang1, Bai Xuezong1, Ma Huidong1, An Zongwen1
Author information +
文章历史 +

摘要

为确定在役风电叶片到达设计寿命后能否延寿继续使用,提出一种基于恒幅寿命图模型的延寿区间计算方法。首先,分析叶片在运行工况下的载荷状况,采用应力-寿命(S-N)曲线分析弯矩作用下的疲劳寿命,进而定义弯矩-寿命(M-N)曲线。根据M-N曲线和CLD模型的映射关系建立延寿估计的CLD模型。基于延寿估计的CLD模型计算待退役叶片已累积的疲劳损伤,并从疲劳损伤估计可持续延寿的时间。最后,以某型叶片为例应用该方法进行延寿区间估计。

Abstract

In order to determine whether wind turbine blades should be decommissioned, a calculation method based on the CLD model is proposed to estimate their life extension span. Firstly, the load conditions of blades under operating conditions are analyzed. The fatigue life under bending moment is analyzed using the S-N curve, and then the bending moment life (M-N) curve is defined. The CLD model of life extension estimation is established according to the mapping relationship between M-N curve and CLD model. The CLD model based on life extension estimation calculates the accumulated fatigue damage of the blades to be decommissioned. The sustainable life extension time is estimated based on the accumulated fatigue damage. Finally, the life extension span of a certain type of blade is estimated by using this method.

关键词

风电叶片 / 疲劳损伤 / 延寿 / CLD / 区间

Key words

wind turbine blades / fatigue damage / life extension / CLD / span

引用本文

导出引用
曾世龙, 马强, 白学宗, 马辉东, 安宗文. 基于CLD模型的风电叶片延寿区间估计[J]. 太阳能学报. 2024, 45(3): 41-45 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1739
Zeng Shilong, Ma Qiang, Bai Xuezong, Ma Huidong, An Zongwen. ESTIMATION OF LIFE EXTENSION SPAN OF WIND TURBINE BLADES BASED ON CLD MODEL[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 41-45 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1739
中图分类号: TK83   

参考文献

[1] GB/T 18451.1—2012, 风力发电机组设计要求[S].
GB/T 18451.1—2012, Design requirements for wind turbine generator sets[S].
[2] IEC 61400-1, Wind turbines-part 1: design requirements[S].
[3] ZIEGLER L, GONZALEZ E, RUBERT T, et al.Lifetime extension of onshore wind turbines: a review covering Germany, Spain, Denmark, and the UK[J]. Renewable and sustainable energy reviews, 2018, 82: 1261-1271.
[4] RAVIKUMAR K, SUBBIAH R, RANGANATHAN N, et al.A review on fatigue damages in the wind turbines: challenges in determining and reducing fatigue failures in wind turbine blades[J]. Wind engineering, 2020, 44(4): 434-451.
[5] SANCHEZ H, SANKARARAMAN S, ESCOBET T, et al.Analysis of two modeling approaches for fatigue estimation and remaining useful life predictions of wind turbine blades[C]//.PHM Society European Conference. Bilibao, Spain, 2016, 3(1): 1-11.
[6] HARALDSDÓTTIR H, SANDSTRÖM M. Lifetime analysis of a wind turbine component[D]. Sweden: Chalmers University of Technology, 2016.
[7] LEE H G, KANG M, PARK J.Fatigue failure of a composite wind turbine blade at its root end[J]. Composite structures, 2015, 133: 878-885.
[8] SU H M, KAM T Y.Reliability analysis of composite wind turbine blades considering material degradation of blades[J]. Composite structures, 2020, 234: 111663.
[9] SAATHOFF M, ROSEMEIER M.Stress-based assessment of the lifetime extension for wind turbines[J]. Journal of physics: conference series, 2020, 1618(5): 052057.
[10] BEGANOVIC N, SÖFFKER D. Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained results[J]. Renewable and sustainable energy reviews, 2016, 64: 68-83.
[11] LUENGO M, KOLIOS A.Failure mode identification and end of life scenarios of offshore wind turbines: a review[J]. Energies, 2015, 8(8): 8339-8354.
[12] 张晋华, 刘永前, 田德, 等. 以风电机组叶片延寿为目标的风电场优化调度[J]. 太阳能学报, 2013, 34(11): 1978-1985.
ZHANG J H, LIU Y Q, TIAN D, et al.Optimal power dispatch in wind farm with life extension of wind turbine blades as target[J]. Acta energiae solaris sinica, 2013, 34(11): 1978-1985.
[13] LIU H W, ZHANG Z C, JIA H B, et al.A modified composite fatigue damage model considering stiffness evolution for wind turbine blades[J]. Composite structures, 2020, 233: 111736.
[14] LIU H W, ZHANG Z C, JIA H B, et al.A novel method to predict the stiffness evolution of in-service wind turbine blades based on deep learning models[J]. Composite structures, 2020, 252: 112702.
[15] NIJSSEN R P L. Fatigue life prediction and strength degradation of wind turbine rotor blade composites[D]. Delft: Delft University of Technology, 2006.
[16] 马强. 双轴共振式风电叶片全尺寸结构疲劳测试理论与方法[D].兰州: 兰州理工大学, 2021.
MA Q.Theory and method of biaxial resonant full-scale structural fatigue testing of wind turbine blades[D]. Lanzhou: Lanzhou University of Technology, 2021.
[17] LARWOOD S, MUSIAL W, ENGINEERING G E, et al.Nedwind 25 blade testing at NREL for the European standards measurement and testing program[R]. Golden: National Renewable Energy Laboratory, 2001: 77-84.

基金

国家自然科学基金(51265025); 市场监督管理总局科技计划资助(2022MK125); 甘肃省高等学校产业支撑引导项目(2020C-12); 甘肃省高等学校创新基金项目(2022A-018)

PDF(1307 KB)

Accesses

Citation

Detail

段落导航
相关文章

/