为了研究城市不同下垫面辐射热作用过程的差异,选取4种下垫面(草地、混凝土、铺面砖、沥青)为研究对象,测量不同下垫面反射的短波辐照度、向上的长波辐照度、地表热流强度以及空气温度、风速等环境参量。分析对比不同下垫面辐射热传递过程中的差异。结果表明:大气逆辐照度占下垫面吸收辐射热的65%以上,4种下垫面以长波辐射的形式释放热量均在75%以上;下垫面与空气间的换热主要以辐射换热的方式进行;夏季草地热稳定性最好,混凝土下垫面的热稳定性最差;冬季混凝土的热稳定性最好,铺面砖的热稳定性最差。
Abstract
In order to investigate the differential process of radiant heat action among various urban underlying surfaces, four types of substrates (grass, concrete, paving blocks and asphalt) were selected as research subjects, measurements were conducted on the short-wave radiation intensity reflected by different underlying surfaces, upward long-wave radiation intensity, surface heat flux intensity, air temperature, wind speed and other environmental parameters. The differences in radiant heat transfer process between the different sub-bedding surfaces were analyzed and compared. The results show that atmospheric inverse radiation accounts for more than 65% of the radiant heat absorbed by the underlying surfaces, and all four types of underlying surfaces release more than 75% of the heat in the form of long-wave radiation; the heat transfer between the underlying surfaces and the air is mainly carried out in the form of radiation heat transfer; the thermal stability of grass is the best in summer, and the thermal stability of concrete underlying surfaces is the worst; the thermal stability of concrete is the best in winter, and the thermal stability of paving blocks is the worst.
关键词
太阳能建筑 /
太阳能建筑 /
下垫面 /
辐射热过程 /
热传导 /
辐射换热
Key words
solar building /
solar building /
underlying surfaces /
radiant heat process /
heat conduction /
radiant heat transfer
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 田喆. 城市热岛效应分析及其对建筑空调采暖能耗影响的研究[D]. 天津: 天津大学, 2005.
TIAN Z.Analysis of urban heat island and study on impact of UHI on building HAVC energy consumption[D]. Tianjin: Tianjin University, 2005.
[2] 杨文娟, 顾海荣, 单永体. 路面温度对城市热岛的影响[J]. 公路交通科技, 2008, 25(3): 147-152, 158.
YANG W J, GU H R, SHAN Y T.Influence of pavement temperature on urban heat island[J]. Journal of highway and transportation research and development, 2008, 25(3): 147-152, 158.
[3] 林波荣, 李晓锋, 朱颖心. 太阳辐射下建筑外微气候的实验研究: 建筑外表面温度分布及气流特征[J]. 太阳能学报, 2001, 22(3): 327-333.
LIN B R, LI X F, ZHU Y X.Study on solar radiation effects on the microclimate of building envelope: the characteristics of external surface temperature and airflow[J]. Acta energiae solaris sinica, 2001, 22(3): 327-333.
[4] 邢永杰, 沈天行, 刘芳. 太阳辐射下不同地表覆盖物的热反应及对城市热环境的影响[J]. 太阳能学报, 2002, 23(6): 717-720.
XING Y J, SHEN T X, LIU F.Thermal response of different earth coverings and their influence on the city thermal environment by solar radiation[J]. Acta energiae solaris sinica, 2002, 23(6): 717-720.
[5] 冉茂宇. 高层建筑受下垫面热辐射的理论计算模型[J]. 华侨大学学报(自然科学版), 2008, 29(4): 609-613.
RAN M Y.Theoretical calculation model of the thermal radiation from the underlying surface to the tall building[J]. Journal of Huaqiao University(natural science), 2008, 29(4): 609-613.
[6] 马秀力, 肖勇全, 李彬. 不同下垫面的反射特性对空调负荷的影响[J]. 山东建筑工程学院学报, 2005, 20(5): 35-38.
MA X L, XIAO Y Q, LI B.Influence on cooling load induced by the reflection characteristics of different ground surfaces[J]. Journal of Shandong University of Architecture and Engineering, 2005, 20(5): 35-38.
[7] AKSHAY K N M. Analysis of short and long wave radiation over Bengaluru[J]. Mapana-journal of sciences, 2016, 15(1): 47-59.
[8] FERREIRA M J, DE OLIVEIRA A P, SOARES J, et al. Radiation balance at the surface in the city of São Paulo, Brazil: diurnal and seasonal variations[J]. Theoretical and applied climatology, 2012, 107(1): 229-246.
[9] 杨雅君, 邹振东, 赵文利, 等. 6种城市下垫面热环境效应对比研究[J]. 北京大学学报(自然科学版), 2017, 53(5): 881-889.
YANG Y J, ZOU Z D, ZHAO W L, et al.Comparative study on the thermal environment effect of six urban underlying surfaces[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 881-889.
[10] 周甘霖, 李耀辉, 孙旭映, 等. 我国北方不同下垫面地表能量通量的变化特征[J]. 干旱气象, 2019, 37(4): 577-585.
ZHOU G L, LI Y H, SUN X Y, et al.Characteristics of surface energy fluxes over different types of underlying surfaces in North China[J]. Journal of arid meteorology, 2019, 37(4): 577-585.
[11] MAKSHTAS A, MAKHOTINA I, KUSTOV V, et al.Energy exchange between surface and atmosphere on the Severnaya Zemlya archipelago in 2013—2019 years[C]//EGU General Assembly Conference Abstracts, Vienna, Austria, 2020.
[12] LUO Y, LI Q L, YANG K, et al.Thermodynamic analysis of air-ground and water-ground energy exchange process in urban space at micro scale[J]. Science of the total environment, 2019, 694: 133612.
[13] STAZI F, TOMASSONI E, BONFIGLI C, et al.Energy comfort and environmental assessment of different building envelope techniques in a Mediterranean climate with a hot dry summer[J]. Applied energy, 2014, 134: 176-196.
[14] DUFFIE J A, BECKMAN W A.Solar engineering of thermal processes[M]. New York: John Wiley & Sons Inc, 2013: 1-230.
[15] 冯雅, 陈启高. 利用浅地表层所蓄太阳能改善室内热环境的埋管热过程研究[J]. 太阳能学报, 1994, 15(4): 380-385.
FENG Y, CHEN Q G.Study on thermal process of buried tube beneath the earth surface to improve the indoor thermal environment[J]. Acta energiae solaris sinica, 1994, 15(4): 380-385.
基金
国家自然科学基金(51878536); 陕西省重点研发项目(2021SF-466)