基于HHO-FA的PEMFC电堆辨识建模

陈永辉, 苏建徽, 解宝, 吴琼, 黄赵军, 黄诚

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 282-289.

PDF(1854 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1854 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 282-289. DOI: 10.19912/j.0254-0096.tynxb.2022-1754

基于HHO-FA的PEMFC电堆辨识建模

  • 陈永辉1,2, 苏建徽1,2, 解宝1,2, 吴琼1,2, 黄赵军1,2, 黄诚1,2
作者信息 +

IDENTIFICATION MODELING OF PEMFC STACK BASED ON HHO-FA

  • Chen Yonghui1,2, Su Jianhui1,2, Xie Bao1,2, Wu Qiong1,2, Huang Zhaojun1,2, Huang Cheng1,2
Author information +
文章历史 +

摘要

为解决质子交换膜燃料电池(PEMFC)模型参数难以确定的问题,该文提出一种基于哈里斯鹰算法(HHO)和萤火虫算法(FA)联合的优化算法,即HHO-FA算法,用于PEMFC模型的参数辨识。为提高PEMFC建模精确度,HHO-FA保留HHO中搜索效率和精度较高的全局搜索过程,局部寻优过程结合具有群体寻优特征的FA算法,同时优化负责全局搜索和局部搜索切换的转换因子,加入惯性权重因子,优化算法结构。该文使用燃料电池的商业仿真工具箱Thermolib获取算例数据,并通过与粒子群算法(PSO) 、HHO算法、蚁群算法(ACO)和FA算法对比分析,对HHO-FA的PEMFC参数辨识性能进行研究。仿真结果表明,相较于PSO、HHO、ACO和FA,HHO-FA的辨识精确度和收敛效率均最高,证实所提出HHO-FA算法在PEMFC模型参数辨识方面的突出性能。

Abstract

To solve the problem that the parameters of the model of proton exchange membrane fuel cell (PEMFC) are difficult to determine, a novel joint optimization algorithm is proposed in this paper, integrating the Harris hawks optimizer (HHO) and firefly algorithm (FA). The HHO-FA algorithm is employed to tackle the parameter identification problem of PEMFC. To enhance the modeling accuracy of PEMFC, HHO-FA retains global exploitation with high search efficiency and accuracy in HHO. The local exploitation is combined with the FA with the characteristics of group optimization. At the same time, the conversion factor responsible for switching between global exploration and local exploitation is optimized, and the inertia weight factor is added to optimize the algorithm structure. Sample data is obtained using Thermolib, a commercial simulation toolbox based on fuel cells. The performance of HHO-FA for PEMFC parameter identification is evaluated against particle swarm optimization (PSO), HHO algorithm, ant colony optimization (ACO) and FA algorithm. The simulation results show that, compared with PSO, HHO, ACO and FA, HHO-FA has the highest identification accuracy and convergence efficiency, which confirms the outstanding performance of the proposed HHO-FA algorithm in PEMFC parameter identification.

关键词

质子交换膜燃料电池 / 辨识 / 哈里斯鹰算法 / 萤火虫算法

Key words

proton exchange membrane fuel cell / identification / Harris hawks optimizer / firefly algorithm

引用本文

导出引用
陈永辉, 苏建徽, 解宝, 吴琼, 黄赵军, 黄诚. 基于HHO-FA的PEMFC电堆辨识建模[J]. 太阳能学报. 2024, 45(3): 282-289 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1754
Chen Yonghui, Su Jianhui, Xie Bao, Wu Qiong, Huang Zhaojun, Huang Cheng. IDENTIFICATION MODELING OF PEMFC STACK BASED ON HHO-FA[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 282-289 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1754
中图分类号: TM911.4   

参考文献

[1] 尹良震, 李奇, 洪志湖, 等. PEMFC发电系统FFRLS在线辨识和实时最优温度广义预测控制方法[J]. 中国电机工程学报, 2017, 37(11): 3223-3235, 3378.
YIN L Z, LI Q, HONG Z H, et al.FFRLS online identification and real-time optimal temperature generalized predictive control method of PEMFC power generation system[J]. Proceedings of the CSEE, 2017, 37(11): 3223-3235, 3378.
[2] 柯超, 甘屹, 王胜佳, 等. 基于温度效应的空冷型质子交换膜燃料电池动态建模[J]. 太阳能学报, 2021, 42(8): 488-495.
KE C, GAN Y, WANG S J, et al.Dynamic modeling of air-cooled proton exchange membrane fuel cell based on temperature effect[J]. Acta energiae solaris sinica, 2021, 42(8): 488-495.
[3] 王振, 卫东, 叶洪吉. 基于温湿度解耦建模的质子交换膜燃料电池内阻特性研究[J]. 太阳能学报, 2020, 41(9): 1-8.
WANG Z, WEI D, YE H J.Internal resistance of PEMFC modeled based on temperature and humidity decoupling modeling[J]. Acta energiae solaris sinica, 2020, 41(9): 1-8.
[4] ZHANG G B, JIAO K.Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy conversion and management, 2018, 176: 409-421.
[5] 胡捷, 苏建徽, 杜燕, 等. 基于最小二乘法的PEMFC电堆模型参数辨识[J]. 太阳能学报, 2021, 42(6): 1-4.
HU J, SU J H, DU Y, et al.Parameter identification of PEMFC stack model based on least square method[J]. Acta energiae solaris sinica, 2021, 42(6): 1-4.
[6] EL-FERGANY A A. Extracting optimal parameters of PEM fuel cells using salp swarm optimizer[J]. Renewable energy, 2018, 119: 641-648.
[7] ZHU Y L, YOUSEFI N.Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm[J]. International journal of hydrogen energy, 2021, 46(14): 9541-9552.
[8] 高志, 蔡慧, 卫东, 等. 水冷型PEMFC输出特性建模与仿真分析[J]. 太阳能学报, 2019, 40(5): 1472-1480.
GAO Z, CAI H, WEI D, et al.Water- cooling PEMFC output characteristic modeling and simulation analysis[J]. Acta energiae solaris sinica, 2019, 40(5): 1472-1480.
[9] ABDI H, AIT MESSAOUDENE N A, KOLSI L, et al. Modeling and optimization of a proton exchange membrane fuel cell using particle swarm algorithm with constriction coefficient[J]. Journal of thermal analysis and calorimetry, 2021, 144(5): 1749-1759.
[10] XU Y P, TAN J W, ZHU D J, et al.Model identification of the proton exchange membrane fuel cells by extreme learning machine and a developed version of arithmetic optimization algorithm[J]. Energy reports, 2021, 7: 2332-2342.
[11] ZHANG J L, KHAYATNEZHAD M, GHADIMI N.Optimal model evaluation of the proton-exchange membrane fuel cells based on deep learning and modified arican vulture optimization algorithm[J]. Energy sources, part A: recovery, utilization, and environmental effects, 2022, 44(1): 287-305.
[12] WANG B W, ZHANG G B, WANG H Z, et al.Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model[J]. Energy and AI, 2020, 1: 100004.
[13] 朱静, 赵静欣. 质子交换膜燃料电池系统数字孪生故障诊断模型研究[J]. 控制理论与应用, 2022, 39(3): 527-534.
ZHU J, ZHAO J X.Digital twin fault diagnosis model analysis of proton exchange membrane fuel cell systems[J]. Control theory & applications, 2022, 39(3): 527-534.
[14] HEIDARI A A, MIRJALILI S, FARIS H, et al.Harris hawks optimization: algorithm and applications[J]. Future generation computer systems, 2019, 97: 849-872.
[15] YANG X S.Firefly algorithm, stochastic test functions and design optimization[J]. International journal of bio-inspired computation, 2010, 2(2): 78-84.
[16] 陈义军, 杨博, 郭正勋, 等. 基于AEO-MRFO的固体氧化物燃料电池参数辨识[J]. 电网技术, 2022, 46(4): 1382-1391.
CHEN Y J, YANG B, GUO Z X, et al.Parameter identification of solid oxide fuel cell based on AEO-MRFO[J]. Power system technology, 2022, 46(4): 1382-1391.
[17] 霍海波, 周帅福, 杨海东, 等. 基于LS-SVM辨识的PEMFC动态建模及仿真[J]. 电池, 2020, 50(1): 31-34.
HUO H B, ZHOU S F, YANG H D, et al.Dynamic modeling and simulation of PEMFC based on LS-SVM identification[J]. Battery bimonthly, 2020, 50(1): 31-34.
[18] 宋天助. 燃料电池动力系统特性及其控制研究[D]. 长春: 吉林大学, 2019.
SONG T Z.Study on characteristics and control of fuel cell power system[D]. Changchun: Jilin University, 2019.
[19] MCKAY D A, SIEGEL J B, OTT W, et al.STEFANOPOULOU A G. Parameterization and prediction of temporal fuel cell voltage behavior during flooding and drying conditions[J]. Journal of power sources, 2008, 178(1): 207-222.
[20] 张晗, 杨继斌, 张继业, 等. 基于多种群萤火虫算法的车载燃料电池直流微电网能量管理优化[J]. 中国电机工程学报, 2021, 41(3): 833-846.
ZHANG H, YANG J B, ZHANG J Y, et al.Multiple-population firefly algorithm-based energy management strategy for vehicle-mounted fuel cell DC microgrid[J]. Proceedings of the CSEE, 2021, 41(3): 833-846.
[21] 田梦楚, 柳林燕, 陈志敏, 等. 基于弹性机制的萤火虫优化粒子滤波算法[J]. 控制与决策, 2024, 39(2): 420-428.
TIAN M C, LIU L Y, CHEN Z M, et al.Firefly algorithm optimized particle filter based on spring mechanism[[J]. Control and decision, 2024, 39(2): 420-428.
[22] 高文欣, 刘升, 肖子雅, 等.柯西变异和自适应权重优化的蝴蝶算法[J]. 计算机工程与应用, 2020, 56(15): 43-50.
GAO W X, LIU S, XIAO Z Y, et al.Butterfly optimization algorithm based on cauchy variation and adaptive weight[J]. Computer engineering and applications, 2020, 56(15): 43-50.
[23] 孔芝, 杨青峰, 赵杰, 等. 基于自适应调整权重和搜索策略的鲸鱼优化算法[J]. 东北大学学报(自然科学版), 2020, 41(1): 35-43.
KONG Z, YANG Q F, ZHAO J, et al.Adaptive adjustment of weights and search strategies-based whale optimization algorithm[J]. Journal of Northeastern University(natural science), 2020, 41(1): 35-43.
[24] 夏世远, 苏建徽, 杜燕, 等. 基于贝叶斯正则化BP神经网络的PEMFC电堆建模[J]. 合肥工业大学学报(自然科学版), 2021, 44(7): 895-899.
XIA S Y, SU J H, DU Y, et al.Modeling of PEMFC stack based on bayesian regularized BP neural network[J]. Journal of Hefei University of Technology(natural science), 2021, 44(7): 895-899.

基金

中央高校基本科研业务费专项资金资助(PA2021GDGP0060); 中央高校基本科研业务费专项资金资助(JZ2021HGQA0194); 安徽省自然科学基金青年项目(2208085QE165)

PDF(1854 KB)

Accesses

Citation

Detail

段落导航
相关文章

/