停机时风力机塔筒与叶片的涡激机理

王丁丁, 赵振宙, 刘岩, 刘惠文, 马远卓, 罗乔

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 46-53.

PDF(2460 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2460 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 46-53. DOI: 10.19912/j.0254-0096.tynxb.2022-1756

停机时风力机塔筒与叶片的涡激机理

  • 王丁丁1, 赵振宙1, 刘岩1, 刘惠文2, 马远卓1, 罗乔3
作者信息 +

VORTEX INDUCED MECHANISM OF WIND TURBINE TOWER AND BLADE DURING SHUTDOWN

  • Wang Dingding1, Zhao Zhenzhou1, Liu Yan1, Liu Huiwen2, Ma Yuanzhuo1, Luo Qiao3
Author information +
文章历史 +

摘要

大型化风力机存在塔筒与叶片的脱落涡相互诱导的现象,极大影响机组的安全运行。为探究两者涡激互扰特性,该文以NREL 5 MW风力机为研究对象,分别选取距离地面65、70、75和80 m高度的塔筒与叶片共存的二维截面,开展6、8、10、12与14 m/s风况下数值模拟,并与单塔筒工况计算结果进行对比分析。研究结果表明,叶片与塔筒的尾涡存在严重相互诱导干涉;与单塔筒绕流工况相比,塔筒特定点压力值增长了1.5倍,升力系数出现多个响应幅值且其最大约为单塔筒的6倍;塔筒与叶片尾涡出现相互合并且脱落频率一致,涡激作用增强;塔筒-叶片工况下的涡脱频率较单塔筒降低,更易与风力机低阶固有频率出现交叉,风力机极可能出现共振。

Abstract

The phenomenon of vortex-induced mutual interference between the tower and blade exists in large-scale wind turbines, significantly affecting their safe operation. This paper investigates this characteristic by using the NREL 5 MW wind turbine as a model. It examines two-dimensional cross-sections where the tower and blade coexist at heights of 65, 70, 75, and 80 meters from the ground. Numerical simulations are conducted under wind conditions of 6, 8, 10, 12, and 14 m/s, and the results are compared with those from single-tower conditions. The findings reveal severe mutual interference between the blade and tower wakes; compared with the single-tower condition, the pressure at a specific point on the tower increases by 1.5 times, and the lift coefficient experiences multiple magnitude responses, with its maximum being about 6 times that of the single tower. Additionally, the wake vortices of the tower and blade appear to merge and share the same frequency, enhancing vortex excitation. The vortex shedding frequency in the combined blade-tower condition is lower than in the single-tower case, making it more likely to synchronize with the lower-order natural frequencies of the wind turbine, thereby potentially increasing the risk of resonance.

关键词

风力机 / 涡脱落 / 计算流体力学 / 涡激振动 / 尾流

Key words

wind turbines / vortex shedding / computational fluid dynamics / vortex-induced vibration / wakes

引用本文

导出引用
王丁丁, 赵振宙, 刘岩, 刘惠文, 马远卓, 罗乔. 停机时风力机塔筒与叶片的涡激机理[J]. 太阳能学报. 2024, 45(3): 46-53 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1756
Wang Dingding, Zhao Zhenzhou, Liu Yan, Liu Huiwen, Ma Yuanzhuo, Luo Qiao. VORTEX INDUCED MECHANISM OF WIND TURBINE TOWER AND BLADE DURING SHUTDOWN[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 46-53 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1756
中图分类号: TK83   

参考文献

[1] 凌子焱, 赵振宙, 刘一格, 等. 风力机三维卷吸尾流模型的研究与验证[J]. 中国电机工程学报, 2023, 43(17): 6639-6646.
LING Z Y, ZHAO Z Z, LIU Y G, et al.Study and validation of three-dimensional entrainment wake model for wind-turbine[J]. Proceedings of the CSEE, 2023, 43(17): 6639-6646.
[2] 江瑞芳, 赵振宙, 陈明, 等. 涡流发生器安装方式对风力机气动性能的影响[J]. 中国电机工程学报, 2023, 43(12): 4639-4648.
JIANG R F, ZHAO Z Z, CHEN M, et al.Influence of vortex generator installation methods on the aerodynamic performance of wind turbine[J]. Proceedings of the CSEE, 2023, 43(12): 4639-4648.
[3] 郑一丹, 刘惠文, 郑源, 等. 错列布局风电场尾流演变实验研究[J]. 中国电机工程学报, 2023, 43(4): 1463-1471.
ZHENG Y D, LIU H W, ZHENG Y, et al.Experimental study on the wakes evolution of a staggered wind farm[J]. Proceedings of the CSEE, 2023, 43(4): 1463-1471.
[4] ÜNAL U O, ATLAR M, GÖREN Ö. Effect of turbulence modelling on the computation of the near-wake flow of a circular cylinder[J]. Ocean engineering, 2010, 37(4): 387-399.
[5] ROSETTI GUILHERME F, GUILHERME V, FUJARRA ANDRÉ L C. URANS calculations for smooth circular cylinder flow in a wide range of Reynolds numbers: solution verification and validation[J]. Journal of fluids Engineering, 2012, 134(12): 121103.
[6] SUMNER D.Two circular cylinders in cross-flow: a review[J]. Journal of fluids and structures, 2010, 26(6): 849-899.
[7] YOKOI Y, HIRAO K.Vortex shedding and vortex formation from a pair of in-line forced oscillating parallel arranged two circular cylinders (in the case of unequal diameter)[J]. Journal of fluid science and technology, 2009, 4(2): 401-414.
[8] SONG F L, LU W T, KUO C H.Interactions of lock-on wake behind side-by-side cylinders of unequal diameter at Reynolds number 600[J]. Experimental thermal and fluid science, 2013, 44: 736-748.
[9] SARPKAYA T.A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of fluids and structures, 2004, 19(4): 389-447.
[10] PRASAD A, WILLIAMSON C H K. The instability of the separated shear layer from a bluff body[J]. Physics of fluids, 1996, 8(6): 1347-1349.
[11] RAHMAN M M, KARIM M M, ALIM M A.Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method[J]. Journal of naval architecture and marine engineering, 1970, 4(1): 27-42.
[12] ZDRAVKOVICH M M.Flow induced oscillations of two interfering circular cylinders[J]. Journal of sound and vibration, 1985, 101(4): 511-521.
[13] ZHAO G M, PILLALAMARRI N R, MYSA R C, et al. Flow-induced vibrations of single and tandem square columns[C]//International Conference on Offshore Mechanics and Arctic Engineering. St. John’s, Newfoundland,Canada: American Society of Mechanical Engineers, 2015, 56482: V002T08A053.
[14] JAIMAN R K, PILLALAMARRI N R, GUAN M Z.A stable second-order partitioned iterative scheme for freely vibrating low-mass bluff bodies in a uniform flow[J]. Computer methods in applied mechanics and engineering, 2016, 301: 187-215.
[15] 尹广洲, 邓勇, 周磊, 等. 过渡流下近壁双圆柱倾角对绕流结构影响[J]. 排灌机械工程学报, 2021, 39(11): 1118-1124.
YIN G Z, DENG Y, ZHOU L, et al.Influence of two near-wall cylinders with different angles on flow structure in transitional flow[J]. Journal of drainage and irrigation machinery engineering, 2021, 39(11): 1118-1124.
[16] 林凌霄, 陈威, 林永水, 等. 并列双圆柱绕流特性和互扰效应数值模拟研究[J]. 应用力学学报, 2021, 38(2): 844-850.
LIN L X, CHEN W, LIN Y S, et al.Numerical simulation of the characteristics and interaction of flow around two side-by-side arranged circular cylinders[J]. Chinese journal of applied mechanics, 2021, 38(2): 844-850.
[17] 刘青松, 陈福东, 李春, 等. 柔性弹片控制翼型流动分离的流固耦合研究[J]. 中国电机工程学报, 2020, 40(6): 1954-1963.
LIU Q S, CHEN F D, LI C, et al.Study on fluid-structure interaction for flow separation control of airfoil with flexible flap[J]. Proceedings of the CSEE, 2020, 40(6): 1954-1963.
[18] 赵振宙, 孟令玉, 苏德程, 等. 涡流发生器形状对风力机翼段动态失速的影响[J]. 工程热物理学报, 2021, 42(8): 1989-1996.
ZHAO Z Z, MENG L Y, SU D C, et al.Effect of vortex generator shape on dynamic stall of wind turbine airfoil[J]. Journal of engineering thermophysics, 2021, 42(8): 1989-1996.
[19] 江瑞芳, 赵振宙, 冯俊鑫, 等. 涡流发生器对风力机叶片流动控制的数值研究[J]. 工程热物理学报, 2021, 42(12): 3170-3177.
JIANG R F, ZHAO Z Z, FENG J X, et al.Numerical study on flow control of wind turbine blade by vortex generators[J]. Journal of engineering thermophysics, 2021, 42(12): 3170-3177.
[20] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA journal, 1994, 32(8): 1598-1605.
[21] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab.(NREL). Golden, CO(United States), 2009.
[22] FRANKE J, FRANK W.Large eddy simulation of the flow past a circular cylinder at ReD=3900[J]. Journal of wind engineering and industrial aerodynamics, 2002, 90(10): 1191-1206.
[23] PARNAUDEAU P, CARLIER J, HEITZ D, et al.Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of fluids, 2008, 20(8): 085101.
[24] 杜晓庆, 林伟群, 施春林, 等. 高雷诺数下并列双圆柱绕流的大涡模拟[J]. 哈尔滨工业大学学报, 2019, 51(6): 193-200.
DU X Q, LIN W Q, SHI C L, et al.Large eddy simulation of flow around two side-by-side circular cylinders at a high Reynolds number[J]. Journal of Harbin Institute of Technology, 2019, 51(6): 193-200.
[25] HU X F, ZHANG X S, YOU Y X.On the flow around two circular cylinders in tandem arrangement at high Reynolds numbers[J]. Ocean engineering, 2019, 189: 106301.

基金

国家自然科学基金(51876054; 11502070; 12102125); 江苏风力发电工程技术中心开放基金(ZK22-03-01); 南通市科技项目(JC2021108)

PDF(2460 KB)

Accesses

Citation

Detail

段落导航
相关文章

/