极端海况是多种外界因素共同作用的结果,传统单变量波浪预报模型无法考虑多变量的影响,因此构建EMD-LSTM多变量输入模型来预报极端海况。以浮标数据作为分析数据集,利用改进的EMD算法消除变量端点效应和时序非平稳性的影响,运用多变量输入模型对其进行预测分析。结果表明:多变量复合模型可对极端海况实现有效提前预警,输入层引入波高、风速和阵风3个关键因子后模型预报性能最佳,比对均方根误差和纳什效率系数可知多变量输入的预报性能较单变量有显著提升。
Abstract
The extreme sea state is generated by the combined action of various external factors. The traditional univariable wave prediction model cannot consider the influence of multiple variables. Therefore, the EMD-LSTM multivariable input model is constructed to predict the extreme sea state. By using the improved EMD algorithm to process the data set measured by wave buoy, the influence of variable end effect and non-stationarity can be eliminated and thus the prediction accuracy of the multivariable input model can be improved. The results show that the multivariable composite model can make an effective early warning on extreme sea conditions, and the model has the best prediction performance after introducing three key factors such as wave height, wind speed and gust speed into the input layer. Indicated by the root mean square error and Nash-Sutcliffe efficiency, the prediction performance of multivariable input model is significantly improved in comparison with the univariable input model.
关键词
波浪传播 /
预测 /
LSTM /
多变量复合模型 /
端点效应 /
非平稳性
Key words
wave propagation /
prediction /
LSTM /
multivariable composite model /
end effect /
nonstationarity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHENG C W, PAN J, LI J X.Assessing the China Sea wind energy and wave energy resources from 1988 to 2009[J]. Ocean engineering, 2013, 65: 39-48.
[2] JIANG H, DUAN S L, HUANG L M, et al.Scale effects in AR model real-time ship motion prediction[J]. Ocean engineering, 2020, 203: 107202.
[3] 张振全, 李醒飞, 杨少波. 基于AR-SVR模型的有效波高短期预测[J]. 太阳能学报, 2021, 42(7): 15-20.
ZHANG Z Q, LI X F, YANG S B.Short-term prediction of significant wave height based on AR-SVR model[J]. Acta energiae solaris sinica, 2021, 42(7): 15-20.
[4] LAW Y Z, SANTO H, LIM K Y, et al.Deterministic wave prediction for unidirectional sea-states in real-time using artificial neural network[J]. Ocean engineering, 2020, 195: 106722.
[5] DESOUKY M A A, ABDELKHALIK O. Wave prediction using wave rider position measurements and NARX network in wave energy conversion[J]. Applied ocean research, 2019, 82: 10-21.
[6] GOPINATH D I, DWARAKISH G S.Wave prediction using neural networks at new Mangalore Port along west coast of India[J]. Aquatic procedia, 2015, 4: 143-150.
[7] FAN S T, XIAO N H, DONG S.A novel model to predict significant wave height based on long short-term memory network[J]. Ocean engineering, 2020, 205: 107298.
[8] ZHANG T, ZHENG X Q, LIU M X.Multiscale attention-based LSTM for ship motion prediction[J]. Ocean engineering, 2021, 230: 109066.
[9] 强亚蓉. 基于EMD方法的时间序列分析和预测[D]. 兰州: 西北师范大学, 2020.
QIANG Y R.Time series analysis and prediction based on EMD technology[D]. Lanzhou: Northwest Normal University, 2020.
[10] 戴邵武, 陈强强, 刘志豪, 等. 基于EMD-LSTM的时间序列预测方法[J]. 深圳大学学报(理工版), 2020, 37(3): 265-270.
DAI S W, CHEN Q Q, LIU Z H, et al.Time series prediction based on EMD-LSTM model[J]. Journal of Shenzhen University (science and engineering), 2020, 37(3): 265-270.
[11] DIXIT P, LONDHE S.Prediction of extreme wave heights using neuro wavelet technique[J]. Applied ocean research, 2016, 58: 241-252.
[12] ZHOU Z Y, SUN S W, GAO Y.Short-term wind power prediction based on EMD-LSTM[C]//2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA). Shenyang, China, 2023: 802-807.
[13] 朱玥, 顾洁, 孟璐. 基于EMD-LSTM的光伏发电预测模型[J]. 电力工程技术, 2020, 39(2): 51-58.
ZHU Y, GU J, MENG L.Photovoltaic power generation prediction model based on EMD-LSTM[J]. Electric power engineering technology, 2020, 39(2): 51-58.
[14] GE Y J, NAN Y R, BAI L J.A hybrid prediction model for solar radiation based on long short-term memory, empirical mode decomposition, and solar profiles for energy harvesting wireless sensor networks[J]. Energies, 2019, 12(24): 4762.
[15] 张茴栋, 张德康, 史宏达. 非线性非平稳波浪极短期预测的复合优化模型[J]. 哈尔滨工程大学学报, 2022, 43(4): 509-515.
ZHANG H D, ZHANG D K, SHI H D.Compound optimization model for extremely short-term predictions of nonlinear and nonstationary time series of waves[J]. Journal of Harbin Engineering University, 2022, 43(4): 509-515.
[16] JAIN S K, SUDHEER K P.Fitting of hydrologic models: a close look at the nash-sutcliffe index[J]. Journal of hydrologic engineering, 2008, 13(10): 981-986.
[17] 张彪, 彭秀艳, 高杰. 基于ELM-EMD-LSTM组合模型的船舶运动姿态预测[J]. 船舶力学, 2020, 24(11): 1413-1421.
ZHANG B, PENG X Y, GAO J.Ship motion attitude prediction based on ELM-EMD-LSTM integrated model[J]. Journal of ship mechanics, 2020, 24(11): 1413-1421.
基金
国家自然基金(52271337; 52071303); 山东省自然科学基金(ZR2019BEE042)