光电建筑的闪电附着特性及瞬态电磁效应研究

边晓燕, 庞振宇, 周歧斌, 张耀, 邓寅, 孟翰涛

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 453-459.

PDF(2226 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2226 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 453-459. DOI: 10.19912/j.0254-0096.tynxb.2022-1763

光电建筑的闪电附着特性及瞬态电磁效应研究

  • 边晓燕1, 庞振宇1, 周歧斌1,2, 张耀3, 邓寅1, 孟翰涛1
作者信息 +

STUDY ON LIGHTNING ATTACHMENT CHARACTERISTICS AND TRANSIENT ELECTROMAGNETIC EFFECTS OF BUILDINGS WITH BIPV MODULES

  • Bian Xiaoyan1, Pang Zhenyu1, Zhou Qibin1,2, Zhang Yao3, Deng Yin1, Meng Hantao1
Author information +
文章历史 +

摘要

安装在光电建筑顶部的BIPV组件遭受雷击的概率较大。为了保护光电建筑本身和内部敏感电子设备,有必要研究光电建筑的闪电附着特性及雷击电磁效应。首先,搭建光伏组件静电场模型,并通过试验验证了模型的准确性,进而通过仿真计算获得BIPV组件最易遭受雷击的位置。然后,基于光电建筑BIPV组件的闪电附着特性构建雷击瞬态电流和瞬态磁场方程,应用有限元法对光电建筑内部的磁场分布进行仿真计算。最后,将光电建筑内的雷击磁场分布与未安装BIPV组件的普通建筑内雷击磁场分布进行比较,结果表明:BIPV组件金属框架最外层的上边缘接闪率最高;与普通建筑相比,安装了BIPV组件的光电建筑金属框架的雷击瞬态电流分布更均匀,因此光电建筑内部雷击磁场强度安全的区域更大,雷击损害风险更低。

Abstract

BIPV modules are prone to be struck by lightning when they are installed on the roof of buildings. In order to protect buildings and internal sensitive electronic equipment, it is necessary to study the lightning attachment characteristics and relative electromagnetic effects. Firstly, the static electric field model of BIPV module is established. The accuracy of the model is verified by experiments. Furthermore, the location where BIPV module is most vulnerable to lightning stroke is obtained through simulation. Secondly, the equations of transient current and magnetic field are constructed according to the lightning attachment characteristics of BIPV modules. The electromagnetic field distribution inside the building with BIPV modules is calculated by the finite element model. Finally, the magnetic field distribution inside the building with BIPV modules are analyzed and compared with that of the building without BIPV modules. The comparison results show that the top edge of the outermost metal frame of BIPV module has the biggest lightning interception possibility. The distribution of transient current inside the metal frame of the building with BIPV modules is more uniform. The internal safe space against magnetic fields is larger than that of the building without BIPV modules. So the lightning damage risk of the building with BIPV modules is lower.

关键词

光电 / 雷电 / 电磁 / 电流分布 / 磁场效应 / BIPV / BAPV

Key words

photoelectricity / lightning / electromagnetism / electric current distribution / magnetic field effects / BIPV / BAPV

引用本文

导出引用
边晓燕, 庞振宇, 周歧斌, 张耀, 邓寅, 孟翰涛. 光电建筑的闪电附着特性及瞬态电磁效应研究[J]. 太阳能学报. 2024, 45(3): 453-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1763
Bian Xiaoyan, Pang Zhenyu, Zhou Qibin, Zhang Yao, Deng Yin, Meng Hantao. STUDY ON LIGHTNING ATTACHMENT CHARACTERISTICS AND TRANSIENT ELECTROMAGNETIC EFFECTS OF BUILDINGS WITH BIPV MODULES[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 453-459 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1763
中图分类号: TK519   

参考文献

[1] 尚黎杰, 蔺红. 分布式电采暖负荷参与系统经济调度策略[J]. 太阳能学报, 2022, 43(8): 352-359.
SHANG L J, LIN H.Economic dispatch strategy of distributed electric heating load participation system[J]. Acta energiae solaris sinica, 2022, 43(8): 352-359.
[2] 朱丽, 陈孟栋, 邵泽彪, 等. 建筑一体化500倍聚光组件光电特性实验与模拟研究[J]. 太阳能学报, 2021, 42(4): 247-252.
ZHU L, CHEN M D, SHAO Z B, et al.Experimental and simulation study on optical and electrical properties of building integrated 500 × solar concentrating photovoltaic module[J]. Acta energiae solaris sinica, 2021, 42(4): 247-252.
[3] 周文波. 碳中和背景下的光伏建筑一体化发展趋势[J]. 现代雷达, 2021, 43(7): 98-99.
ZHOU W B.Development trend of photovoltaic building integration under the background of carbon neutrality[J]. Modern radar, 2021, 43(7): 98-99.
[4] 王君, 余本东, 王矗垚, 等. 太阳能光伏光热建筑一体化(BIPV/T)研究新进展[J]. 太阳能学报, 2022, 43(6): 72-78.
WANG J, YU B D, WANG C Y, et al.New advancements of building integrated photovoltaic/thermal system(BIPV/T)[J]. Acta energiae solaris sinica, 2022, 43(6): 72-78.
[5] 王志东, 王春丽. 光电建筑是节能建筑的必然形式[J]. 太阳能, 2021(5): 20-25.
WANG Z D, WANG C L.Photoelectric building is an inevitable form of energy-saving building[J]. Solar energy, 2021(5): 20-25.
[6] 袁茂荣, 孙忠欣, 邬铭法. 光伏建筑一体化防雷设计[J]. 太阳能, 2012(1): 42-45.
YUAN M R, SUN Z X, WU M F.Integrated lightning protection design of photovoltaic building[J]. Solar energy, 2012(1): 42-45.
[7] 马涛, 申璐. 光伏组件在非标准测试条件下的能量分布[J]. 太阳能学报, 2022, 43(2): 169-175.
MA T, SHEN L.Analysis of energy distribution of photovoltaic module under non-standard test conditions[J]. Acta energiae solaris sinica, 2022, 43(2): 169-175.
[8] 鄢伟安, 孔文琪, 刘卫东, 等. 具有初始退化随机特征的光伏组件可靠性评估[J]. 太阳能学报, 2022, 43(3): 152-157.
YAN W A, KONG W Q, LIU W D, et al.Reliability assessment of photovoltaic modules with initial degradation random characteristics[J]. Acta energiae solaris sinica, 2022, 43(3): 152-157.
[9] ZHANG Y, CHEN H C, DU Y P.Considerations of photovoltaic system structure design for effective lightning protection[J]. IEEE transactions on electromagnetic compatibility, 2020, 62(4): 1333-1341.
[10] GUO F Y, HUANG M D, ZHANG Z G.Design and implementation of monitoring and early-warning system in lightning protection device[C]//2011 International Conference on Control, Automation and Systems Engineering (CASE). Singapore, 2011: 1-4.
[11] PHANTHUNA N, THONGCHOMPOO N, PLANGKLANG B, et al.Model and experiment for study and analysis of Photovoltaic lightning effects[C]//2010 International Conference on Power System Technology. Zhejiang, China, 2010: 1-5.
[12] 周歧斌, 史一泽, 王振兴, 等. 雷电电磁脉冲对风机机舱电磁环境的影响与防护研究[J]. 电瓷避雷器, 2021(3): 51-56, 155.
ZHOU Q B, SHI Y Z, WANG Z X, et al.Electromagnetic environment impact and protection of lightning electromagnetic pulse on wind turbine nacelle[J]. Insulators and surge arresters, 2021(3): 51-56, 155.
[13] 窦志鹏, 杨仲江, 刘健. 光伏组件的雷电感应过电压和过电流计算[J]. 电瓷避雷器, 2017(3): 47-51.
DOU Z P, YANG Z J, LIU J.Calculation of voltage and current induced by lightning electromagnetic fields in photovoltaic modules[J]. Insulators and surge arresters, 2017(3): 47-51.
[14] JIANG T S, GRZYBOWSKI S.Impact of lightning impulse voltage on polycrystalline silicon photovoltaic modules[C]//2013 International Symposium on Lightning Protection (XII SIPDA). Belo Horizonte, Brazil, 2013: 287-290.
[15] CHO J Y, KIM J H, LEE T K, et al.Analysis of lightning overvoltage according to position of lightning-induced voltage at the solar power plant[C]//2019 11th Asia-Pacific International Conference on Lightning (APL). Hong Kong, China, 2019: 1-4.
[16] 赵洪翠, 孙伟, 韩沛. 基于COMSOL Multiphysics的建筑物防雷系统瞬态电流分析[J]. 电瓷避雷器, 2019(3): 129-133.
ZHAO H C, SUN W, HAN P.Transient current analysis of building lightning protection system based on COMSOL multiphysics[J]. Insulators and surge arresters, 2019(3): 129-133.
[17] 刘荣美, 李云峰, 汪友华, 等. 利用Matlab与ATPDRAW分析高层建筑物雷电流分布[J]. 电工技术学报, 2013, 28(增刊2): 152-156.
LIU R M, LI Y F, WANG Y H, et al.Analysis on lightning current distribution of tall buildings by using Matlab and ATPDRAW[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 152-156.
[18] 黄晓虹, 周歧斌, 杜亚平. 分析带金属板结构的建筑物内部雷电脉冲磁场分布的等效电路法[J]. 上海交通大学学报, 2012, 46(7): 1112-1116, 1121.
HUANG X H, ZHOU Q B, DU Y P.An equivalent circuit method for computing lightning-induced magnetic fields in structures with metallic plates[J]. Journal of Shanghai Jiao Tong University, 2012, 46(7): 1112-1116, 1121.
[19] TATEMATSU A, RACHIDI F, RUBINSTEIN M.Analysis of electromagnetic fields inside a reinforced concrete building with layered reinforcing bar due to direct and indirect lightning strikes using the FDTD method[J]. IEEE transactions on electromagnetic compatibility, 2015, 57(3): 405-417.
[20] AASHTO T 373M/T 373—2017, 雷电防护系统部件(LPSC) 第2部分: 导体和接地极的要求[S].
AASHTO T 373M/T 373—2017, Lightning protection system components(LPSC) Part 2: requirements for conductors and earth electrodes[S].
[21] IEEE Std 998—2012,IEEE guide for direct lightning stroke shielding of substations[S].
[22] GAMEROTA W R, ELISMÉ J O, UMAN M A, et al.Current waveforms for lightning simulation[J]. IEEE transactions on electromagnetic compatibility, 2012, 54(4): 880-888.
[23] BECERRA M, COORAY V.On the velocity of positive connecting leaders associated with negative downward lightning leaders[J]. Geophysical research letters, 2008, 35(2): 28011-28015.
[24] 中华人民共和国住房和城乡建设部. 建筑物防雷设计规范: GB 50057—2010[S]. 北京: 中国计划出版社, 2011.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design protection of structures against lightning: GB 50057—2010[S]. Beijing: China Planning Press, 2011.

基金

国家自然基金(51977128)

PDF(2226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/