依靠双流化床冷态装置考察流化风和松动风的流量对流化床流化形式、返料器料封高度以及固体循环量的影响。当流化风流量为5 m3/h时,流化床气化器内颗粒呈鼓泡流化。返料器料位与返料器两侧压差有关,压差越大,返料器内料封高度越低。气体反窜时返料器两侧压差变小,料位逐渐升高。不改变其他条件,在下松动风流量为3 m3/h及以下时,增大松动风流量,颗粒循环量逐渐增加,一定条件下固体颗粒循环量达到最大为6.72 kg/h。对装置进行数值模拟,结果显示颗粒的流化形式与实验一致。
Abstract
By means of a cold state device of dual fluidized bed, the effects of fluidization air and loose air on the fluidization form of particles in the fluidized bed, the height of the granule and the amount of solid circulation are investigated. When the fluidization air is 5 m3/h, the particles in the fluidized bed gasifier are bubbling. The height of the granule is related to the pressure difference on both sides of the feed recycle devices. The greater the pressure difference, the lower the height of the granule in feed recycle devices. The pressure difference between the two sides of the feed recycle devices becomes smaller when the gas is reversed, and the height of the granule gradually increases. Without changing other conditions, when the lower loosening air is 3 m3 /h and below, increase the loosening air, and the particle circulation volume gradually increases. For this set of devices, the solid particle circulation volume reaches a maximum of 6.72 kg/h under certain conditions. The numerical simulation of the device shows that the fluidization form of particles in the model is consistent with the experiment.
关键词
生物质 /
制氢 /
双流化床 /
计算流体力学模拟 /
气固流动 /
反应器设计
Key words
biomass /
hydrogen production /
dual fluidized bed /
CFD simulation /
gas-solid flow /
reactor design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
CAO J W, ZHANG W Q, LI Y F, et al.Current status of hydrogen production in China[J]. Progress in chemistry, 2021, 33(12): 2215-2244.
[2] 岳国君, 林海龙, 彭元亭, 等. 以生物质为原料的未来绿色氢能[J]. 化工进展, 2021, 40(8): 4678-4684.
YUE G J, LIN H L, PENG Y T, et al.Future green hydrogen energy from biomass[J]. Chemical industry and engineering progress, 2021, 40(8): 4678-4684.
[3] 范翼麟, 王志超, 王一坤, 等. 碳税交易下的典型生物质混烧技术经济分析[J]. 洁净煤技术, 2021, 27(4): 111-116.
FAN Y L, WANG Z C, WANG Y K, et al.Techno-economic analysis of typical biomass co-combustion under carbon tax trading[J]. Clean coal technology, 2021, 27(4): 111-116.
[4] KERN S, PFEIFER C, HOFBAUER H.Synergetic utilization of biomass and fossil fuels: influence of temperature in dual fluidized bed steam co-gasification of coal and wood[J]. International journal of environmental science and development, 2012: 294-299.
[5] KARL J, PRÖLL T. Steam gasification of biomass in dual fluidized bed gasifiers: a review[J]. Renewable and sustainable energy reviews, 2018, 98: 64-78.
[6] KERN S, PFEIFER C, HOFBAUER H.Co-gasification of wood and lignite in a dual fluidized bed gasifier[J]. Energy & fuels, 2013, 27(2): 919-931.
[7] MANDAL S, DAGGUPATI S, MAJHI S, et al.Catalytic gasification of biomass in dual-bed gasifier for producing tar-free syngas[J]. Energy & fuels, 2019, 33(3): 2453-2466.
[8] SCHWEITZER D, GREDINGER A, SCHMID M, et al.Steam gasification of wood pellets, sewage sludge and manure: gasification performance and concentration of impurities[J]. Biomass and bioenergy, 2018, 111: 308-319.
[9] PARVEZ A M, HAFNER S, HORNBERGER M, et al.Sorption enhanced gasification(SEG) of biomass for tailored syngas production with in situ CO2 capture: current status, process scale-up experiences and outlook[J]. Renewable and sustainable energy reviews, 2021, 141: 110756.
[10] 李昌进. 循环流化床U阀(Loop Seal)动力学研究[D]. 北京: 中国科学院研究生院, 2014.
LI C J.Study on dynamics of circulating fluidized bed U-valve[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2014.
[11] 张沛功. 某300 MW循环流化床锅炉自平衡 “U” 返料器返料异常原因分析及处置方法[J]. 电力系统装备, 2021(10): 45-47.
ZHANG P G.Reason analysis and treatment method of abnormal return material of a 300 MW circulating fluidized bed boiler self-balancing “U” returner[J]. Electric power system equipment, 2021(10): 45-47.
[12] 孙昊, 孙波, 牛红军, 等. 固体颗粒流体化现象的研究[J]. 江西化工, 2013(2): 164-168.
SUN H, SUN B, NIU H J, et al.Research on phenomenon of fluidization for solid particles[J]. Jiangxi chemical industry, 2013(2): 164-168.
[13] 白树华, 王志杰, 房倚天, 等. 流化床气化炉带出细粉非机械返料机构研究[J]. 燃料化学学报, 2004, 32(3): 329-334.
BAI S H, WANG Z J, FANG Y T, et al.Non-mechanical valve for fluidized bed gasifier[J]. Journal of fuel chemistry and technology, 2004, 32(3): 329-334.
[14] THAPA R, PFEIFER C, HALVORSEN B.Modeling of reaction kinetics in bubbling fluidized bed biomass gasification reactor[J]. International journal of energy and environment, 2014, 5: 35-44.
[15] THAPA R K. optimization of flow behavior in biomass gasification reactor optimization of flow behavior in biomass gasification reactor[D]. Norway: Telemark University College, 2018.
[16] 刘志. 立管窜气对旋风分离器分离效率的影响[D]. 北京: 清华大学, 2015.
LIU Z.Effect of air leakage from standpipe on efficiency of a cyclone separator[D]. Beijing: Tsinghua University, 2015.