氢动力船加注过程高压氢气泄漏数值模拟

孔祥宇, 胡始弘, 康济川, 闫发锁, 刘大辉, 董岩

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 298-304.

PDF(1956 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1956 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 298-304. DOI: 10.19912/j.0254-0096.tynxb.2022-1774

氢动力船加注过程高压氢气泄漏数值模拟

  • 孔祥宇1, 胡始弘3, 康济川2, 闫发锁2, 刘大辉4, 董岩1,2
作者信息 +

NUMERICAL SIMULATION OF HIGH PRESSURE HYDROGEN LEAKAGE DURING HYDROGEN POWERED SHIP REFUELING

  • Kong Xiangyu1, Hu Shihong3, Kang Jichuan2, Yan Fasuo2, Liu Dahui4, Dong Yan1,2
Author information +
文章历史 +

摘要

该文针对氢动力船加注过程中可能发生的高压氢气泄漏问题进行了数值模拟研究。首先,通过与已有实验结果对比,验证了CFD虚喷嘴模型和分层流动模型的有效性。其次,结合氢动力船实际加注场景,着重分析风速、障碍物对高压氢气扩散行为的影响。最后,利用半球扩散模型划分疏散区域,提高氢动力船加注过程的安全性。结果表明:分层流动模型与实验结果拟合性更好;高速的风可阻止氢气上浮,增加氢气泄漏距离,降低氢气浓度;泄漏源下游设置障碍物一定程度上缩短了易燃云在水平方向上的扩散距离。

Abstract

In this paper, a numerical study is conducted to investigate the possible high pressure hydrogen leakage during the refueling process of hydrogen powered vessels. The virtual nozzle model and flow partitioning model used in the CFD simulation for the leakage are verified by comparing with existing experimental results. The effects of wind speed and obstacles on the high-pressure hydrogen diffusion behavior were analyzed based on actual refueling scenarios of hydrogen powered vessels. The hemispherical diffusion model is used to determine the evacuation area to improve the safety during the refueling process. The results show that the performance of the flow partitioning model is better. The high-speed wind can prevent the hydrogen from floating, increase the hydrogen leakage distance and reduce the hydrogen concentration. The obstacles placed downstream of the leakage location can shorten the diffusion distance of flammable clouds in the horizontal direction to a certain extent.

关键词

氢气 / 泄漏 / 数值模型 / 氢动力船

Key words

hydrogen / leakage / numerical models / hydrogen powered vessels

引用本文

导出引用
孔祥宇, 胡始弘, 康济川, 闫发锁, 刘大辉, 董岩. 氢动力船加注过程高压氢气泄漏数值模拟[J]. 太阳能学报. 2024, 45(3): 298-304 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1774
Kong Xiangyu, Hu Shihong, Kang Jichuan, Yan Fasuo, Liu Dahui, Dong Yan. NUMERICAL SIMULATION OF HIGH PRESSURE HYDROGEN LEAKAGE DURING HYDROGEN POWERED SHIP REFUELING[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 298-304 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1774
中图分类号: TK91   

参考文献

[1] 马涛, 孙佰清, 郭海凤, 等. 我国中长期经济发展中氢能消费量及CO2减排效果估算[J]. 太阳能学报, 2010, 31(11): 1521-1526.
MA T, SUN B Q, GUO H F, et al.Evaluation on hydrogen consumption and its reduction of CO2 emission of Chinese medium and long-term economic development[J]. Acta energiae solaris sinica, 2010, 31(11): 1521-1526.
[2] 童亮, 袁裕鹏, 李骁, 等. 我国氢动力船舶创新发展研究[J]. 中国工程科学, 2022, 24(3): 127-139.
TONG L, YUAN Y P, LI X, et al.Innovative developmental of hydrogen-powered ships in China[J]. Strategic study of CAE, 2022, 24(3): 127-139.
[3] 郑津洋, 开方明, 刘仲强, 等. 高压氢气储运设备及其风险评价[J]. 太阳能学报, 2006, 27(11): 1168-1174.
ZHENG J Y, KAI F M, LIU Z Q, et al.Risk assessment and control of high pressure hydrogen equipment[J]. Acta energiae solaris sinica, 2006, 27(11): 1168-1174.
[4] 郑津洋, 张俊峰, 陈霖新, 等. 氢安全研究现状[J]. 安全与环境学报, 2016, 16(6): 144-152.
ZHENG J Y, ZHANG J F, CHEN L X, et al.Research status in situ of hydrogen safety[J]. Journal of safety and environment, 2016, 16(6): 144-152.
[5] SIRVILL L C, ROBERTS P, BUTLER C J, et al.Characterization of the hazards from jet releases of hydrogen[C]//International Conference on Hydrogen Safety. Pisa, Italy, 2005: 1-11.
[6] GEBHART B, HILDER D S, KELLEHER M.The diffusion of turbulent buoyant jets[J]. Advances in heat transfer, 1984, 16: 1-57.
[7] ROBERTS P T, SHIRVILL L C, ROBERTS T A, et al.Dispersion of hydrogen from high-pressure sources[C]. Hazards XIX Conference, 2006: 27-30.
[8] RUGGLES A J, EKOTO I W.Ignitability and mixing of underexpanded hydrogen jets[J]. International journal of hydrogen energy, 2012, 37(22): 17549-17560.
[9] OLESZCZAK P, WOLANSKI P.Ignition during hydrogen release from high pressure into the atmosphere[J]. Shock waves, 2010, 20(6): 539-550.
[10] BIRCH A D, BROWN D R, DODSON M G, et al.The structure and concentration decay of high pressure jets of natural gas[J]. Combustion science and technology, 1984, 36(5/6): 249-261.
[11] HAN S H, CHANG D, KIM J S.Release characteristics of highly pressurized hydrogen through a small hole[J]. International journal of hydrogen energy, 2013, 38(8): 3503-3512.
[12] 李雪芳, 何倩, 柯道友, 等. 高压氢气小孔泄漏射流分层流动模型与验证[J]. 清华大学学报(自然科学版), 2018, 58(12): 1095-1100.
LI X F, HE Q, KE D Y, et al.Validation of flow partitioning model for high pressure hydrogen jets through small orifices[J]. Journal of Tsinghua University (science and technology), 2018, 58(12): 1095-1100.
[13] 高源, 陈朝刚. 通风压力及泄露位置对燃料电池汽车氢气小孔泄露的影响[J]. 同济大学学报(自然科学版), 2021, 49(12): 1771-1777.
GAO Y, CHEN C G.Effect of ventilation pressure and leakage location on leakage of hydrogen small holes in fuel cell vehicles[J]. Journal of Tongji University (natural science), 2021, 49(12): 1771-1777.
[14] 袁裕鹏, 崔伟逸, 沈辉, 等. 燃料电池船舶舱内氢气泄漏扩散的数值模拟[J]. 交通运输工程学报, 2022, 22(4): 196-209.
YUAN Y P, CUI W Y, SHEN H, et al.Numerical simulation of leakage and diffusion of hydrogen in cabin of fuel cell ship[J]. Journal of traffic and transportation engineering, 2022, 22(4): 196-209.
[15] 余亚波, 邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
YU Y B, DENG Y D.Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of Zhejiang University (engineering science), 2020, 54(2): 381-388.
[16] 余亚波. 燃料电池客车高压舱氢气泄漏扩散研究[D]. 武汉: 武汉理工大学, 2020.
YU Y B.Study on hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[D]. Wuhan: Wuhan University of Technology, 2020.
[17] 李峰, 袁裕鹏, 严新平, 等. 燃料电池船舶舱内氢气泄漏数值模拟研究[J]. 交通信息与安全, 2017, 35(6): 60-66.
LI F, YUAN Y P, YAN X P, et al.A study on numerical simulation of hydrogen leakage in cabin of fuel cell ship[J]. Journal of transport information and safety, 2017, 35(6): 60-66.
[18] 王林元, 林红. 液化和压缩气体半球形扩散模型集的构建和应用[J]. 安全与环境学报, 2017, 17(2): 601-607.
WANG L Y, LIN H.Establishment and application of hemispherical diffusion model sets for liquefied and compressed gas[J]. Journal of safety and environment, 2017, 17(2): 601-607.
[19] 王志宪. 危化品泄漏模拟分析及扩散模型优化研究[D]. 大连: 大连理工大学, 2016.
WANG Z X.Leakage simulation analysis and diffusion model optimization of hazardous chemicals[D]. Dalian: Dalian University of Technology, 2016.
[20] 成诚, 夏天, 庞奇志.夏冬季场景下环氧乙烷储罐泄漏事故后果模拟[J]. 安全与环境工程, 2022, 29(4): 156-162.
CHENG C, XIA T, PANG Q Z.Simulation study on consequences of ethylene oxide storage tank leakage accidents in summer and winter[J]. Safety and environmental engineering, 2022, 29(4): 156-162.
[21] BIRCH A D, HUGHES D J, SWAFFIELD F.Velocity decay of high pressure jets[J]. Combustion science and technology, 1987, 52(1/2/3): 161-171.
[22] 郑津洋, 刘延雷, 徐平, 等. 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报(工学版), 2008, 42(12): 2177-2180.
ZHENG J Y, LIU Y L, XU P, et al.Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University (engineering science), 2008, 42(12): 2177-2180.
[23] BOUAZZA A, VANGPAISAL T.Laboratory investigation of gas leakage rate through a GM/GCL composite liner due to a circular defect in the geomembrane[J]. Geotextiles and geomembranes, 2006, 24(2): 110-115.

基金

国家自然科学基金(52101305); 山东省重点研发计划(重大科技创新工程)(2020CXGC010701)

PDF(1956 KB)

Accesses

Citation

Detail

段落导航
相关文章

/