生物统合加工嵌合纤维小体组装模块反应机制探究

徐奭, 万平, 李娟娟, 刘涵, 杜济良, 田沈

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 139-144.

PDF(1723 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1723 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 139-144. DOI: 10.19912/j.0254-0096.tynxb.2022-1782

生物统合加工嵌合纤维小体组装模块反应机制探究

  • 徐奭, 万平, 李娟娟, 刘涵, 杜济良, 田沈
作者信息 +

COHESIN-DOCKERIN ASSEMBLY INTERACTIONS MECHANISM OF CBP DESIGNER CELLULOSOME

  • Xu Shi, Wan Ping, Li Juanjuan, Liu Han, Du Jiliang, Tian Shen
Author information +
文章历史 +

摘要

为探究生物统合加工嵌合纤维小体中重组蛋白粘连模块与对接模块的分子相互作用及其对嵌合纤维小体组装效率的影响,采用酿酒酵母细胞分泌表达支架蛋白和酶分子催化模块,在胞外通过非变性蛋白凝胶电泳和等温滴定量热法测定分析二级支架蛋白、纤维素酶分别与一级支架蛋白结合时的相互作用反应。结果显示,分别连接二级支架蛋白和纤维素酶蛋白的对接模块与粘连模块的亲和力常数增大,亲和力减小,组装反应为焓变驱动的放热反应并产生氢键,证明这些蛋白分子间亲和力减小是导致二级支架蛋白与一级支架蛋白组装效率较低的主要影响因素。

Abstract

In order to explore the molecular interaction between recombinant protein cohesin module and dockerin module and its effect on the assembly efficiency. In this study, scaffoldins and enzymes was secreted by Saccharomyces cerevisiae cells, and the interaction of secondary scaffolins and cellulases combined with primary scaffolin was determined and analyzed by non-denatured electrophoresis and isothermal titration calorimetry in vitro. The results showed that the affinity force between the dockerin module of secondary scaffold protein and cohesion module of cellulase protein decreased while the affinity constant (Kd) increased. The assembly reaction was driven by enthalpy change and hydrogen bonds are generated. The results proved that the decrease of intermolecular affinity of the proteins was the main factor that leads to the lower assembly efficiency of secondary scaffold proteins and primary scaffold proteins.

关键词

酿酒酵母 / 嵌合纤维小体 / 纤维素酶 / 自组装 / 蛋白相互识别 / 分子动力学

Key words

Saccharomyces cerevisiae / designer cellulosome / cellulase / self-assembly / protein mutual recognition / molecular dynamic

引用本文

导出引用
徐奭, 万平, 李娟娟, 刘涵, 杜济良, 田沈. 生物统合加工嵌合纤维小体组装模块反应机制探究[J]. 太阳能学报. 2024, 45(3): 139-144 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1782
Xu Shi, Wan Ping, Li Juanjuan, Liu Han, Du Jiliang, Tian Shen. COHESIN-DOCKERIN ASSEMBLY INTERACTIONS MECHANISM OF CBP DESIGNER CELLULOSOME[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 139-144 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1782
中图分类号: TK6   

参考文献

[1] MORAÏS S, MORAG E, BARAK Y, et al. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes[J]. mBio, 2012, 3(6): e00508-e00512.
[2] GUGLIELMI G, BÉGUIN P. Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome[J]. FEMS microbiology letters, 1998, 161(1): 209-215.
[3] TSAI S L, DASILVA N A, CHEN W.Functional display of complex cellulosomes on the yeast surface via adaptive assembly[J]. ACS synthetic biology, 2013, 2(1): 14-21.
[4] TANG H T, WANG J J, WANG S H, et al.Efficient yeast surface-display of novel complex synthetic cellulosomes[J]. Microbial cell factories, 2018, 17(1): 122.
[5] ANANDHARAJ M, LIN Y J, RANI R P, et al.Constructing a yeast to express the largest cellulosome complex on the cell surface[J]. Proceeding of the National Academy of Sciences of the United States of America, 2020, 117(5): 2385-2394.
[6] JEON S D, LEE J E, KIM S J, et al.Unique contribution of the cell wall-binding endoglucanase G to the cellulolytic complex in Clostridium cellulovorans[J]. Applied and environmental microbiology, 2013, 79(19): 5942-5948.
[7] BORNE R, BAYER E A, PAGÈS S, et al. Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity[J]. The FEBS journal, 2013, 280(22): 5764-5779.
[8] TIAN S, DU J L, BAI Z S, et al.Design and construction of synthetic cellulosome with three adaptor scaffoldins for cellulosic ethanol production from steam-exploded corn stover[J]. Cellulose, 2019, 26(15): 8401-8415.
[9] 胡佳瑶, 张梅妍, 王振灵, 等. 海马总蛋白提取及其酶解条件优化[J]. 生物技术进展, 2017, 7(4): 310-314.
HU J Y, ZHANG M Y, WANG Z L, et al.Extraction and optimization of hydrolysis conditions of total protein from hippocampus[J]. Current biotechnology, 2017, 7(4): 310-314.
[10] 杨贵强, 徐绍刚, 王建, 等. 几种鲑鳟鱼血清蛋白非变性聚丙烯酰胺凝胶电泳的研究[J]. 海洋与湖沼, 2013, 44(4): 1068-1072.
YANG G Q, XU S G, WANG J, et al.Serum protein of several salmons by native polyacrylamide gel electrophoresis[J]. Oceanologia et limnologia sinica, 2013, 44(4): 1068-1072.
[11] ZHANG J Z, PENG X, YUAN A W, et al.Peroxisome proliferator-activated receptor γ mediates porcine placental angiogenesis through hypoxia inducible factor, vascular endothelial growth factor-and angiopoietin-mediated signaling[J]. Molecular medicine reports, 2017, 16(3): 2636-2644.
[12] SMITH S P, BAYER E A.Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex[J]. Current opinion in structural biology, 2013, 23(5): 686-694.
[13] BOMBLE Y J, BECKHAM G T, MATTHEWS J F, et al.Modeling the self-assembly of the cellulose enzyme complex[J]. Journal of biological chemistry, 2011, 286(7): 5614-5623.
[14] CARVALHO A L, DIAS F M V, PRATES J A M, et al. Cellulosome assembly revealed by the crystal structure of the cohesin-dockerin complex[J]. Proceedings of the national academy of sciences of the United States of America, 2003, 100(24): 13809-13814.

基金

国家自然科学基金(31971202); 国家科技支撑计划(2019YFB1503802)

PDF(1723 KB)

Accesses

Citation

Detail

段落导航
相关文章

/