海上风力机前端风电场瞬态重构研究

姜贞强, 王滨

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 65-72.

PDF(2662 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2662 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 65-72. DOI: 10.19912/j.0254-0096.tynxb.2022-1790

海上风力机前端风电场瞬态重构研究

  • 姜贞强1, 王滨2,3
作者信息 +

TRANSIENT RECONSTRUCTION OF WIND FARM AHEAD OF OFFSHORE WIND TURBINES

  • Jiang Zhenqiang1, Wang Bin2,3
Author information +
文章历史 +

摘要

针对海上风电单机位风速测点有限的关键问题,提出一种基于少数风速测点的海上风力机前端风电场瞬态扩展方法。基于本征正交分解(POD)将先验风电场数据分解为时间系数与空间模态特征信息,通过循环神经网络(RNN)建立有限风速测点到全局风电场的非线性映射关系,实时构建海上瞬态风电场。结果表明基于POD-RNN的重构模型可通过有限风速测点准确重构海上风力机前端风电场,全局风电场瞬态重构均方根误差(RMSE)可控制在1.8136 m/s内。

Abstract

To address the key problem of insufficient measurement locations of wind speed for the individual offshore wind power structure, a transient expansion method of the wind farm ahead of offshore wind turbines based on limited measurement data for wind speed is proposed. The prior farm data is decomposed into feature information for both the temporal coefficients and the spatial modes based on proper orthogonal decomposition (POD). A nonlinear mapping relationship from insufficient measurement locations of wind speed to the global wind farm is established by recurrent neural networks (RNN) to construct the offshore transient wind farm in real time. The results show that the proposed POD-RNN method can accurately reconstruct the wind farm ahead of the offshore wind turbine using limited measurement data for wind speed, where the root mean square error (RMSE) of the transient reconstruction of wind farm is within 1.8136 m/s.

关键词

海上风力机 / 风电场 / 循环神经网络 / 本征正交分解 / 瞬态重构

Key words

offshore wind turbines / wind farm / recurrent neural networks / proper orthogonal decomposition / transient reconstruction

引用本文

导出引用
姜贞强, 王滨. 海上风力机前端风电场瞬态重构研究[J]. 太阳能学报. 2024, 45(3): 65-72 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1790
Jiang Zhenqiang, Wang Bin. TRANSIENT RECONSTRUCTION OF WIND FARM AHEAD OF OFFSHORE WIND TURBINES[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 65-72 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1790
中图分类号: TM614   

参考文献

[1] 黄俊辉, 孙文涛, 李辰, 等. 基于WRF模式的海上风能资源特性分析及评价[J]. 太阳能学报, 2021, 42(7): 278-283.
HUANG J H, SUN W T, LI C, et al.Analysis and evaluation of offshore wind energy resources characteristics based on WRF model[J]. Acta energiae solaris sinica, 2021, 42(7): 278-283.
[2] MITAS L, MITASOVA H.Spatial interpolation[J]. Geographical information systems: principles, techniques, management and applications, 1999, 1(2): 481-492.
[3] NAEEM M N, ARSHAD S H, SHARMA C B.The Ritz formulation applied to the study of the vibration frequency characteristics of functionally graded circular cylindrical shells[J]. Proceedings of the institution of mechanical engineers, part C: journal of mechanical engineering science, 2010, 224(1): 43-54.
[4] 李俊卿, 李秋佳. 基于Kriging和长短期记忆网络的风电功率预测方法[J]. 太阳能学报, 2020, 41(11): 241-247.
LI J Q, LI Q J.Wind power prediction method based on kriging and LSTM network[J]. Acta energiae solaris sinica, 2020, 41(11): 241-247.
[5] 马人乐, 阳荣昌, 陈俊岭. 本征正交分解法在风电机组风场模拟中的应用[J]. 太阳能学报, 2014, 35(9): 1764-1770.
MA R L, YANG R C, CHEN J L.Application of proper orthogonal decomposition method in wind field simulation for wind turbine system[J]. Acta energiae solaris sinica, 2014, 35(9): 1764-1770.
[6] 龙远, 邓小龙, 杨希祥, 等. 基于PSO-BP神经网络的平流层风场短期快速预测[J]. 北京航空航天大学学报, 2022, 48(10): 1970-1978.
LONG Y, DENG X L, YANG X X, et al.Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978.
[7] OZELKAN E, CHEN G, USTUNDAG B B.Spatial estimation of wind speed: a new integrative model using inverse distance weighting and power law[J]. International journal of digital earth, 2016, 9(8): 733-747.
[8] SUN Y H, SONG G Q, LYU H.Extrapolation reconstruction of wind pressure fields on the claddings of high-rise buildings[J]. Frontiers of structural and civil engineering, 2019, 13(3): 653-666.
[9] HOLMES J D.Analysis and synthesis of pressure fluctuations on bluff bodies using eigenvectors[J]. Journal of wind engineering and industrial aerodynamics, 1990, 33(1/2): 219-230.
[10] 李维勃, 王国砚, 钱志浩, 等. 基于径向基函数的冷却塔风场重构[J]. 工程力学, 2019, 36(5): 226-234.
LI W B, WANG G Y, QIAN Z H, et al.Wind field reconstruction of cooling towers based on the radial basis function[J]. Engineering mechanics, 2019, 36(5): 226-234.
[11] TU J H, GRIFFIN J, HART A, et al.Integration of non-time-resolved PIV and time-resolved velocity point sensors for dynamic estimation of velocity fields[J]. Experiments in fluids, 2013, 54(2): 1-20.
[12] HE C X, LIU Y Z.Proper orthogonal decomposition-based spatial refinement of TR-PIV realizations using high-resolution non-TR-PIV measurements[J]. Experiments in fluids, 2017, 58(7): 1-22.
[13] 潘超, 李润宇, 王典, 等. 基于风速时空关联的多步预测方法[J]. 太阳能学报, 2022, 43(2): 458-464.
PAN C, LI R Y, WANG D, et al.Multi-step wind speed prediction method based on wind speed spatial-time correlation[J]. Acta energiae solaris sinica, 2022, 43(2): 458-464.
[14] DENG Z W, CHEN Y J, LIU Y Z, et al.Time-resolved turbulent velocity field reconstruction using a long short-term memory (LSTM)-based artificial intelligence framework[J]. Physics of fluids, 2019, 31(7): 075108.
[15] 陈皓, 郭明明, 田野, 等. 卷积神经网络在流场重构研究中的进展[J]. 力学学报, 2022, 54(9): 2343-2360.
CHEN H, GUO M M, TIAN Y, et al.Progress of convolution neural networks in flow field reconstruction[J]. Chinese journal of theoretical and applied mechanics, 2022, 54(9): 2343-2360.
[16] 刘利琴, 郭颖, 赵海祥, 等. 浮式垂直轴风机的动力学建模、仿真与实验研究[J]. 力学学报, 2017, 49(2): 299-307.
LIU L Q, GUO Y, ZHAO H X, et al.Dynamic modeling, simulation and model tests research on the floating vawt[J]. Chinese journal of theoretical and applied mechanics, 2017, 49(2): 299-307.
[17] 朱本瑞, 孙超, 黄焱. 海上单桩风机结构冰激振动响应分析[J]. 土木工程学报, 2021, 54(1): 88-96.
ZHU B R, SUN C, HUANG Y.Ice-induced vibration response analysis of monopile offshore wind turbine[J]. China civil engineering journal, 2021, 54(1): 88-96.
[18] 武煜昊, 王永生, 徐昊, 等. 风电输出功率预测技术研究综述[J]. 计算机科学与探索, 2022, 16(12): 2653-2677.
WU Y H, WANG Y S, XU H, et al.Survey of wind power output power forecasting technology[J]. Journal of frontiers of computer science and technology, 2022, 16(12): 2653-2677.

基金

国家自然科学基金(52071301; 51939002)

PDF(2662 KB)

Accesses

Citation

Detail

段落导航
相关文章

/