新能源渗透率的不断增加以及越来越多的储能装置并入电网,使得现行的调频市场机制已不能再适应电力系统的实际情况,基于此现状构建风、光以及独立储能装置与常规火电机组共同参与的调频辅助服务市场与电能量市场联合出清模型,模型中利用层次分析法(AHP)进行调频性能指标的权重优化,使得新能源与独立储能装置参与电网调频后的电力系统的调频压力减小,同时进一步提高对新能源的消纳力度。通过算例分析表明,引入高渗透率的新能源机组与独立储能装置参与调频市场不仅能减少调频性能较差的火电机组中标,减少弃风、弃光现象,也能减少运营商购买调频服务的费用支出。
Abstract
With the increasing penetration rate of new energy and the integration of more and more energy storage devices into the power grid, the current frequency modulation market mechanism can no longer adapt to the actual situation of the power system. Based on this situation, a joint clearance model of frequency modulation auxiliary service market and electricity energy market involving wind turbine generators, photovoltaic panels, independent energy storage devices and conventional thermal power units is built. In the model, the analytic hierarchy process(AHP) is used to optimize the weight of frequency modulation performance indicators, which reduces the frequency modulation pressure of the power system after the participation of new energy and independent energy storage devices in the grid frequency modulation, and further improves the absorption of new energy. The example analysis shows that the introduction of new energy units with high permeability and independent energy storage devices to participate in the power market can not only reduce the bidding of thermal power units with poor frequency modulation performance, reduce the phenomenon of wind and light abandonment, but also reduce the cost of purchasing frequency modulation service for operators.
关键词
风电机组 /
储能 /
调频 /
层次分析法 /
联合出清 /
调频性能指标
Key words
wind turbines /
energy storage /
frequency modulation /
AHP /
joint clearing /
frequency modulation performance index
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PJM. PJM manual 11: energy & ancillary services market operations[EB/OL].http://www.pjm.com/-/media/docume nts/manuals/m11.ashx.
[2] 张兴平, 何澍, 王泽嘉, 等. 不同新能源渗透率下燃煤机组行为策略分析[J]. 电力建设, 2022, 43(5): 9-17.
ZHANG X P, HE S, WANG Z J, et al.Behavior strategy of coal-fired units under different new energy penetration rate[J]. Electric power construction, 2022, 43(5): 9-17.
[3] 王智伟, 徐海超, 刘鑫, 等. 能量-调频市场风储多模式竞价策略[J]. 电力电容器与无功补偿, 2022, 43(1): 173-179.
WANG Z W, XU H C, LIU X, et al.Bidding strategy of wind and energy storage with multi-mode in the energy and frequency modulation market[J]. Power capacitor & reactive power compensation, 2022, 43(1): 173-179.
[4] 山西能源监管办. 关于印发《山西电力调频辅助服务市场运营细则》的通知[EB/OL]. http://www.china-nengyuan.com/news/109558.htlm//Shanxi Energy Commiss-ion Administration. A notice of the operation rule of Shanxi power regulation market[EB/OL]. http://www.china-nengyu an.com/news/109558.htlm.
[5] 邹金. 基于多智能体的广东调频辅助服务市场建模仿真研究[D]. 北京: 华北电力大学, 2020.
ZOU J.Modeling and simulation of Guangdong frequncy regulation market based on multi-agent[D]. Beijing: North China Electric Power University, 2020.
[6] 袁家海, 席星璇. 我国电力辅助服务市场建设的现状与问题[J]. 中国电力企业管理, 2020(7): 34-38.
YUAN J H, XI X X.Present situation and problems of power auxiliary service market construction in China[J]. China power enterprise management, 2020(7): 34-38.
[7] 包铭磊, 丁一, 邵常政, 等. 北欧电力市场评述及对我国的经验借鉴[J]. 中国电机工程学报, 2017, 37(17): 4881-4892, 5207.
BAO M L, DING Y, SHAO C Z, et al.Review of Nordic electricity market and its suggestions for China[J]. Proceedings of the CSEE, 2017, 37(17): 4881-4892, 5207.
[8] 杨超, 孙谊媊, 王勇, 等. 国外典型调频辅助服务市场综述与启示[J]. 电力需求侧管理, 2021, 23(5): 96-100.
YANG C, SUN Y Q, WANG Y, et al.Review and enlightenment of foreign typical frequency regulation auxiliary service market[J]. Power demand side management, 2021, 23(5): 96-100.
[9] 陈大宇, 张粒子, 马历. 储能参与的AGC市场出清优化建模新方法[J]. 电力系统自动化, 2014, 38(13): 79-84.
CHEN D Y, ZHANG L Z, MA L.A new optimization method for AGC market clearing considering energy storage systems[J]. Automation of electric power systems, 2014, 38(13): 79-84.
[10] 崔达, 史沛然, 陈启鑫, 等. 风电参与能量—调频联合市场的优化策略[J]. 电力系统自动化, 2016, 40(13): 5-12.
CUI D, SHI P R, CHEN Q X, et al.Optimal strategy for wind power bidding in energy and frequency regulation markets[J]. Automation of electric power systems, 2016, 40(13): 5-12.
[11] 赵晋泉, 孙中昊, 杨余华, 等. 分布式光伏参与调频辅助服务交易机制研究[J]. 全球能源互联网, 2020, 3(5): 477-486.
ZHAO J Q, SUN Z H, YANG Y H, et al.Study on frequency regulation ancillary service trading mechanisms for distributed photovoltaic generation[J]. Journal of global energy interconnection, 2020, 3(5): 477-486.
[12] 刘巨, 姚伟, 文劲宇, 等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术, 2014, 38(3): 638-646.
LIU J, YAO W, WEN J Y, et al.Prospect of technology for large-scale wind farm participating into power grid frequency regulation[J]. Power system technology, 2014, 38(3): 638-646.
[13] 崔勇, 周晓倩, 刘文, 等. 基于系统辅助服务收益动态优化的多能联盟体市场策略[J]. 太阳能学报, 2021, 42(2): 370-375.
CUI Y, ZHOU X Q, LIU W, et al.Market strategy of multi energy union based on dynamic optimization of system auxiliary service revenue[J]. Acta energiae solaris sinica, 2021, 42(2): 370-375.
[14] DENG X Y, DENG Y.D-AHP method with different credibility of information[J]. Soft computing, 2019, 23(2): 683-691.
[15] 马斌, 李一鹏. AGC机组性能指标及考核补偿计算方法[J]. 河北电力技术, 2014, 33(6): 6-8, 37.
MA B, LI Y P.Performance indicators and calculation method of evaluation compensation in AGC unit[J]. Hebei electric power, 2014, 33(6): 6-8, 37.
[16] U-DOMINIC C M, UJAM J C, IGBOKWE N. Applications of analytical hierarchy process (AHP) and knowledge management (KM) concepts in defect identification: a case of cable manufacturing[J]. Asian journal of advanced research and reports, 2021, 15(5): 9-21.
基金
河北省自然科学基金(E2020502066); 中央高校基本科研业务费专项资金(2020MS091)