混合图神经网络和门控循环网络的短期光伏功率预测

殷豪, 李奕甸, 谢智锋, 于慧, 张展, 王懿华

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 523-532.

PDF(4385 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4385 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 523-532. DOI: 10.19912/j.0254-0096.tynxb.2022-1798

混合图神经网络和门控循环网络的短期光伏功率预测

  • 殷豪1, 李奕甸1, 谢智锋1, 于慧1, 张展1, 王懿华2
作者信息 +

SHORT-TERM PHOTOVOLTAIC POWER PREDICTION METHOD BASED ON MIXED GRAPH NEURAL NETWORK AND GATED RECURRENT UNIT NETWORK

  • Yin Hao1, Li Yidian1, Xie Zhifeng1, Yu Hui1, Zhang Zhan1, Wang Yihua2
Author information +
文章历史 +

摘要

为了能从大量历史光伏发电数据中提取出有效的时序特征以及在非欧几里得域中的关联,建立了基于混合图神经网络以及门控循环网络的短期光伏功率预测模型。该模型首先通过最邻近分类算法生成气象及出力数据的最邻近图,再将其结合图神经网络作为编码器对气象及出力数据进行编码形成时间序列,最后通过门控循环网络以及全连接层解码输出光伏功率预测结果。通过仿真分析验证,该模型具有更优的特征挖掘能力和分析性能,能更好地突出某时间节点的气象及出力数据特征,适应天气突变带来特征变化,从而提升光伏预测整体模型的表达能力。

Abstract

In order to extract effective temporal features and connections between non Euclidean domains from a large amount of historical photovoltaic power generation data, a short-term photovoltaic power prediction model based on mixed graph neural network and gated recurrent network is established. The model first generates the K-nearest neighbor graph of meteorological and output data through the K-nearest neighbor classification algorithm, and then uses the graph neural network as an encoder to encode the meteorological and output data to form a time series, and finally outputs the photovoltaic power prediction results through the gated recurrent network and the full connection layer decoding. Through simulation and analysis, the model has better feature mining ability and analysis performance, can better highlight the meteorological and output data characteristics of a certain time node, adapt to the feature changes caused by sudden changes in weather, and thus improve the expression ability of the overall model of photovoltaic prediction.

关键词

图神经网络 / 深度学习 / 光伏发电 / 功率预测 / 门控循环网络

Key words

graph neural networks / deep learning / photovoltaic power generation / power forecasting / gated recurrent network

引用本文

导出引用
殷豪, 李奕甸, 谢智锋, 于慧, 张展, 王懿华. 混合图神经网络和门控循环网络的短期光伏功率预测[J]. 太阳能学报. 2024, 45(3): 523-532 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1798
Yin Hao, Li Yidian, Xie Zhifeng, Yu Hui, Zhang Zhan, Wang Yihua. SHORT-TERM PHOTOVOLTAIC POWER PREDICTION METHOD BASED ON MIXED GRAPH NEURAL NETWORK AND GATED RECURRENT UNIT NETWORK[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 523-532 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1798
中图分类号: TM615   

参考文献

[1] 任大伟, 肖晋宇, 侯金鸣, 等. 双碳目标下我国新型电力系统的构建与演变研究[J]. 电网技术, 2022, 46(10): 3831-3839.
REN D W, XIAO J Y, HOU J M, et al.Construction and evolution of China’s new power system under dual carbon goal[J]. Power system technology, 2022, 46(10): 3831-3839.
[2] 孙骁强, 杨楠, 李庆海, 等. 基于“双碳”目标的光热电站调峰能力规划研究[J]. 电网技术, 2023, 47(1): 73-83.
SUN X Q, YANG N, LI Q H, et al.Peak shaving capacity planning of solar thermal power stations based on “emission peak and carbon neutrality” target[J]. Power system technology, 2023, 47(1): 73-83.
[3] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
TAN X D, LIU J, XU Z C, et al.Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric power, 2021, 54(5): 1-6.
[4] 舒印彪, 赵勇, 赵良, 等. “双碳”目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672.
SHU Y B, ZHAO Y, ZHAO L, et al.Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672.
[5] WANG P, ZHANG S N, PU Y R, et al.Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: an empirical study from China[J]. Energy, 2021, 219: 119611.
[6] 孙珂. 国家能源局:2021年光伏发电新增并网容量5488万千瓦[N]. 国家电网报, 2022-03-15(5).
SUN K. National Energy Administration: the newly added grid connected capacity of photovoltaic power generation was 54.88 million kilowatts In2021[N]. State Grid News, 2022-03-15(5).
[7] KONG H M, SUI H B, TANG J X, et al.Research status and difficulties of ultra-short-term prediction of photovoltaic power[J]. IOP conference series: earth and environmental science, 2019, 252: 032094.
[8] 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8): 3027-3048.
ZHU Q F, LI J T, QIAO J, et al.Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8): 3027-3048.
[9] YANG Z, CAO Y, XIU J.Power generation forecasting model for photovoltaic array based on generic algorithm and BP neural network[C]//IEEE 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems (CCIS). Shenzhen, China, 2014: 380-383.
[10] 刘科研, 盛万兴, 马晓晨, 等. 基于多种群遗传算法的分布式光伏接入配电网规划研究[J]. 太阳能学报, 2021, 42(6): 146-155.
LIU K Y, SHENG W X, MA X C, et al.Planning research of distributed photovoltaic source access distribution network based on multi-population genetic algorithm[J]. Acta energiae solaris sinica, 2021, 42(6): 146-155.
[11] WANG Y S, LIAO W L, CHANG Y Q.Gated recurrent unit network-based short-term photovoltaic forecasting[J]. Energies, 2018, 11(8): 2163.
[12] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar, 2014: 25-29.
[13] 胡锋, 朱承治, 汪志华. 基于改进K-means算法的电力负荷分类研究[J]. 电子测量技术, 2018, 41(12): 44-48.
HU F, ZHU C Z, WANG Z H.Research on the power load classification based on improved K-means algorithm[J]. Electronic measurement technology, 2018, 41(12): 44-48.
[14] 倪超, 王聪, 朱婷婷, 等. 基于CNN-Bi-LSTM的太阳辐照度超短期预测[J]. 太阳能学报, 2022, 43(3): 197-202.
NI C, WANG C, ZHU T T, et al.Super-short-term forecast of solar irradiance based on CNN-Bi-LSTM[J]. Acta energiae solaris sinica, 2022, 43(3): 197-202.
[15] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[EB/OL].2016: arXiv: 1605.05273. https://arxiv.org/abs/1605.05273.pdf.
[16] LI G H, MÜLLER M, THABET A, et al. DeepGCNs: can GCNs go as deep as CNNs?[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South), 2020: 9266-9275.
[17] LIAO W L, BAK-JENSEN B, PILLAI J R, et al.A review of graph neural networks and their applications in power systems[J]. Journal of modern power systems and clean energy, 2021, 10(2): 345-360.
[18] WU Z H, PAN S R, CHEN F W, et al.A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24
[19] ZHOU J, CUI G Q, HU S D, et al.Graph neural networks: a review of methods and applications[J]. AI open, 2020, 1: 57-81.
[20] 张思毅, 刘明波, 雷振兴, 等. 基于集合经验模态分解和编码器-解码器的风电功率多步预测[J]. 南方电网技术, 2023, 17(4): 16-24.
ZHANG S Y, LIU M B, LEI Z X, et al.Multi-step prediction of wind power based on ensemble empirical mode decomposition and encoder-decoder[J]. Southern power system technology, 2023, 17(4): 16-24.
[21] HAMILTON W L,YING R,LESKOVEC J. Inductive representation learning on large graphs[EB/OL].2017:arXiv: 1706.02216. https://arxiv.org/pdf/1706.02216.pdf.
[22] 腊志垚, 钱育蓉, 冷洪勇, 等. 基于随机游走的图嵌入研究综述[J]. 计算机工程与应用, 2022, 58(13): 1-13.
LA Z Y, QIAN Y R, LENG H Y, et al.Overview of research on graph embedding based on random walk[J]. Computer engineering and applications, 2022, 58(13): 1-13.
[23] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].2016: arXiv: 1609.02907. https://arxiv.org/abs/1609.02907.pdf.
[24] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].2017: arXiv: 1710.10903. https://arxiv.org/abs/1710.10903.pdf.
[25] SHI Y S, HUANG Z J, FENG S K, et al. Masked label prediction: unified message passing model for semi-supervised classification[EB/OL].2020: arXiv: 2009.03509. https://arxiv.org/abs/2009.03509.pdf.
[26] 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45(12): 4721-4728.
MENG A B, XU X C, CHEN J M, et al.Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power system technology, 2021, 45(12): 4721-4728.
[27] GRAVES A, MOHAMED A R, HINTON G.Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, BC, Canada, 2013: 6645-6649.
[28] 殷豪, 张铮, 丁伟锋, 等. 基于生成对抗网络和LSTM-CSO的少样本光伏功率短期预测[J]. 高电压技术, 2022, 48(11): 4342-4351.
YIN H, ZHANG Z, DING W F, et al.Short-term prediction of small-sample photovoltaic power based on generative adversarial network and LSTM-CSO[J]. High voltage engineering, 2022, 48(11): 4342-4351.
[29] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL].2014: arXiv: 1412.6980. https://arxiv.org/abs/1412.6980.pdf.

基金

国家自然科学基金(62276068); 广东省科技计划(2016A010104016)

PDF(4385 KB)

Accesses

Citation

Detail

段落导航
相关文章

/