高效海水淡化的太阳能界面蒸发器研究进展

刘强, 肖维新, 罗渊, 廖斌, 严开祺, 张敬杰

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 591-602.

PDF(3308 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(3308 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 591-602. DOI: 10.19912/j.0254-0096.tynxb.2022-1807

高效海水淡化的太阳能界面蒸发器研究进展

  • 刘强1,2, 肖维新1,2, 罗渊1,2, 廖斌1, 严开祺1, 张敬杰1
作者信息 +

RESEARCH PROGRESS OF SOLAR INTERFACIAL EVAPORATORS FOR HIGH-EFFICIENCY DESALINATION

  • Liu Qiang1,2, Xiao Weixin1,2, Luo Yuan1,2, Liao Bin1, Yan Kaiqi1, Zhang Jingjie1
Author information +
文章历史 +

摘要

综述基于光热转换原理的界面蒸发器(SDIE)的最新进展,从性能评估指标和材料设计思路的角度出发,分别介绍光热转换材料、基体和水输送通道及其应用于海水淡化的耐盐设计,并简单介绍SDIE的其他应用领域,最后展望其在海水淡化领域待解决的问题和未来研究方向。

Abstract

In this paper, the latest progress of SDIE based on the principle of photothermal conversion is reviewed. The photothermal conversion materials, substrates, water transport channels, and salt resistance design for seawater desalination are introduced respectively from the perspectives of performance evaluation indicators and material design ideas. Other scalable application fields of SDIE are also briefly introduced. Finally, the problems to be solved and future research directions of SDIE in seawater desalination are prospected

关键词

太阳能 / 蒸发 / 海水淡化 / 光热转换

Key words

solar energy / evaporation / desalination / photothermal conversion

引用本文

导出引用
刘强, 肖维新, 罗渊, 廖斌, 严开祺, 张敬杰. 高效海水淡化的太阳能界面蒸发器研究进展[J]. 太阳能学报. 2024, 45(3): 591-602 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1807
Liu Qiang, Xiao Weixin, Luo Yuan, Liao Bin, Yan Kaiqi, Zhang Jingjie. RESEARCH PROGRESS OF SOLAR INTERFACIAL EVAPORATORS FOR HIGH-EFFICIENCY DESALINATION[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 591-602 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1807
中图分类号: S214.9   

参考文献

[1] 李驾三. 水资源学[J]. 地球科学进展, 1991, 6(6): 72-73.
LI J S.Water resources[J]. Advances in earth science,1991, 6(6): 72-73.
[2] 纪雪. 2025年将有35亿人面临缺水[J]. 生态经济, 2019, 35(10): 5-8.
JI X.In 2025, 3.5 billion people will face water shortage[J]. Ecological economy, 2019, 35(10): 5-8.
[3] LI Z Y, SIDDIQI A, ANADON L D, et al.Towards sustainability in water-energy nexus: ocean energy for seawater desalination[J]. Renewable and sustainable energy reviews, 2018, 82: 3833-3847.
[4] GUDE V G, NIRMALAKHANDAN N, DENG S G.Renewable and sustainable approaches for desalination[J]. Renewable and sustainable energy reviews, 2010, 14(9): 2641-2654.
[5] AHMED F E, HASHAIKEH R, HILAL N.Solar powered desalination-technology, energy and future outlook[J]. Desalination, 2019, 453: 54-76.
[6] GAO M M, ZHU L L, PEH C K, et al.Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & environmental science, 2019, 12(3): 841-864.
[7] IRSHAD M S, WANG X B, ABBASI M S, et al.Semiconductive, flexible MnO2 NWs/chitosan hydrogels for efficient solar steam generation[J]. ACS sustainable chemistry & engineering, 2021, 9(10): 3887-3900.
[8] LIN Y W, XU H, SHAN X L, et al.Solar steam generation based on the photothermal effect: from designs to applications, and beyond[J]. Journal of materials chemistry A, 2019, 7(33): 19203-19227.
[9] SHAHBAZI M A, GHALKHANI M, MALEKI H.Directional freeze-casting: a bioinspired method to assemble multifunctional aligned porous structures for advanced applications[J]. Advanced engineering materials, 2020, 22(7): 2000033.
[10] BRONGERSMA M L, HALAS N J, NORDLANDER P.Plasmon-induced hot carrier science and technology[J]. Nature nanotechnology, 2015, 10(1): 25-34.
[11] LOEB S, LI C H, KIM J H.Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black[J]. Environmental science & technology, 2018, 52(1): 205-213.
[12] ZHANG Y, WANG Y, YU B, et al.Hierarchically structured black gold film with ultrahigh porosity for solar steam generation[J]. Advanced materials, 2022, 34(21): e2200108.
[13] CHEN Z H, LIN Y, QIAN Q, et al.Picosecond laser treated aluminium surface for photothermal seawater desalination[J]. Desalination, 2022, 528: 115561.
[14] HUANG X J, ZHANG W L, GUAN G Q, et al.Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics[J]. Accounts of chemical research, 2017, 50(10): 2529-2538.
[15] ZHANG X F, WU G, YANG X C.MoS2 nanosheet-carbon foam composites for solar steam generation[J]. ACS applied nano materials, 2020, 3(10): 9706-9714.
[16] SU L F, HU Y Q, MA Z Q, et al.Synthesis of hollow copper sulfide nanocubes with low emissivity for highly efficient solar steam generation[J]. Solar energy materials and solar cells, 2020, 210: 110484.
[17] VÉLEZ-CORDERO J R, HERNÁNDEZ-CORDERO J. Heat generation and conduction in PDMS-carbon nanoparticle membranes irradiated with optical fibers[J]. International journal of thermal sciences, 2015, 96: 12-22.
[18] JIAN H W, WANG Y, LI W X, et al.Reduced graphene oxide aerogel with the dual-cross-linked framework for efficient solar steam evaporation[J]. Colloids and surfaces A: physicochemical and engineering aspects, 2021, 629: 127440.
[19] LI K R, GAO M M, LI Z P, et al.Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming[J]. Nano energy, 2020, 74: 104875.
[20] HE S M, CHEN C J, KUANG Y D, et al.Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination[J]. Energy & environmental science, 2019, 12(5): 1558-1567.
[21] SUN P, ZHANG W, ZADA I, et al.3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS applied materials & interfaces, 2020, 12(2): 2171-2179.
[22] XU N, HU X Z, XU W C, et al.Mushrooms as efficient solar steam-generation devices[J]. Advanced materials, 2017, 29(28): 1606762.
[23] LIU Z W, QING R K, XIE A Q, et al.Self-contained Janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation[J]. ACS applied materials & interfaces, 2021, 13(16): 18829-18837.
[24] DAO V D, VU N H, YUN S N.Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano energy, 2020, 68: 104324.
[25] ZHAO Q B, WAN Y Q, CHANG F, et al.Photothermal converting polypyrrole/polyurethane composite foams for effective solar desalination[J]. Desalination, 2022, 527: 115581.
[26] ZOU Y, ZHAO J Y, ZHU J Y, et al.A mussel-inspired polydopamine-filled cellulose aerogel for solar-enabled water remediation[J]. ACS applied materials & interfaces, 2021, 13(6): 7617-7624.
[27] NAGUIB M, KURTOGLU M, PRESSER V, et al.Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced materials, 2011, 23(37): 4248-4253.
[28] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372(6547): eabf1581.
[29] LI R Y, ZHANG L B, SHI L, et al.MXene Ti3C2: an effective 2D light-to-heat conversion material[J]. ACS nano, 2017, 11(4): 3752-3759.
[30] GUO Z Z, ZHOU W, ARSHAD N, et al.Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs[J]. Carbon, 2022, 186:19-27.
[31] GUO Z Z, ZHOU W, ARSHAD N, et al.Excellent energy capture of hierarchical MoS2 nanosheets coupled with MXene for efficient solar evaporators and thermal packs[J]. Carbon, 2022, 186: 19-27.
[32] SU J B, ZHANG P K, YANG R, et al.MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater[J]. Renewable energy, 2022, 195: 407-415.
[33] CAI C Y, WANG Y Q, WEI Z C, et al.Biomimetic 3D membranes with MXene heterostructures for superior solar steam generation, water treatment, and electricity generation[J]. Solar RRL, 2021, 5(11): 2100593.
[34] XU D X, LI Z D, LI L S, et al.2D MXene nanomaterials: insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications (adv. funct. mater. 47/2020)[J]. Advanced functional materials, 2020, 30(47): 2070314.
[35] WANG Y, QI Q B, FAN J, et al.Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation[J]. Separation and purification technology, 2021, 254: 117615.
[36] WANG G, FU Y, GUO A K, et al.Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation[J]. Chemistry of materials, 2017, 29(13): 5629-5635.
[37] ZHANG W M, YAN J, SU Q, et al.Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance[J]. Journal of colloid and interface science, 2022, 612: 66-75.
[38] KIRIARACHCHI H D, AWAD F S, HASSAN A A, et al.Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment[J]. Nanoscale, 2018, 10(39): 18531-18539.
[39] WANG S, NIU Y, YE X Y, et al.Robustly inorganic solar steam generator derived from hollow glass microspheres based composites for desalination[J]. Solar RRL, 2021, 5(12): 2100771.
[40] ZHOU X Y, ZHAO F, GUO Y H, et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification[J]. Science advances, 2019, 5(6): eaaw5484.
[41] GUO Y H, ZHAO X, ZHAO F, et al.Tailoring surface wetting states for ultrafast solar-driven water evaporation[J]. Energy & environmental science, 2020, 13(7): 2087-2095.
[42] SUN Y, GAO J P, LIU Y, et al.Copper sulfide-macroporous polyacrylamide hydrogel for solar steam generation[J]. Chemical engineering science, 2019, 207: 516-526.
[43] ITO Y, TANABE Y, HAN J H, et al.Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Advanced materials, 2015, 27(29): 4302-4307.
[44] LI W, TIAN X H, LI X F, et al.Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression[J]. Journal of materials chemistry A, 2021, 9(26): 14859-14867.
[45] LI X Q, XU W C, TANG M Y, et al.Graphene oxide-based efficient and scalable solar desalination under one Sun with a confined 2D water path[J]. Proceedings of the national academy of sciences of the United States of America, 2016, 113(49): 13953-13958.
[46] LI Y J, GAO T T, YANG Z, et al.Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano energy, 2017, 41: 201-209.
[47] WANG X, GAN Q M, CHEN R, et al.Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection[J]. ACS sustainable chemistry & engineering, 2020, 8(21): 7753-7761.
[48] YANG Y W, ZHAO H Y, YIN Z Y, et al.A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation[J]. Materials horizons, 2018, 5(6): 1143-1150.
[49] 陈英波, 徐蛟鹏. 碳黑/聚酰胺6复合膜的制备及其高效太阳能蒸发应用[J]. 天津工业大学学报, 2022, 41(2): 9-13, 19.
CHEN Y B, XU J P.Preparation of carbon black/polyamide 6 composite membrane and its application in high efficiency solar evaporation[J]. Journal of Tiangong University, 2022, 41(2): 9-13, 19.
[50] ZHU M W, LI Y J, CHEN F J, et al.Plasmonic wood for high-efficiency solar steam generation[J]. Advanced energy materials, 2018, 8(4): 1701028.
[51] JIAN H W, QI Q B, WANG W, et al.A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation[J]. Separation and purification technology, 2021, 264: 118459.
[52] FU Y, WANG G, MING X, et al.Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon, 2018, 130: 250-256.
[53] LIU G H, CHEN T, XU J L, et al.Salt-rejecting solar interfacial evaporation[J]. Cell reports physical science, 2021, 2: 100310.
[54] LI H R, YAN Z, LI Y, et al.Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges[J]. Water research, 2020, 177: 115770.
[55] YANG H, SUN Y H, PENG M W, et al.Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity[J]. ACS nano, 2022, 16(2): 2511-2520.
[56] LI S Y, QIU F, XIA Y G, et al.Integrating a self-floating Janus TPC@CB sponge for efficient solar-driven interfacial water evaporation[J]. ACS applied materials & interfaces, 2022, 14(17): 19409-19418.
[57] ZHANG Q, LI L, JIANG B, et al.Flexible and mildew-resistant wood-derived aerogel for stable and efficient solar desalination[J]. ACS applied materials & interfaces, 2020, 12(25): 28179-28187.
[58] LI J Y, ZHOU X, ZHANG J Y, et al.Migration crystallization device based on biomass photothermal materials for efficient salt-rejection solar steam generation[J]. ACS applied energy materials, 2020, 3(3): 3024-3032.
[59] LI X Q, MIN X Z, LI J L, et al.Storage and recycling of interfacial solar steam enthalpy[J]. Joule, 2018, 2(11): 2477-2484.
[60] WU S H, XIONG G P, YANG H C, et al.Scalable production of integrated graphene nanoarchitectures for ultrafast solar-thermal conversion and vapor generation[J]. Matter, 2019, 1(4): 1017-1032.
[61] LI J Y, JING Y J, XING G Y, et al.Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges[J]. Journal of materials chemistry A, 2022, 10(36): 18470-18489.
[62] GUO Y H, LU H Y, ZHAO F, et al.Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced materials, 2020, 32(11): e1907061.

基金

北京市自然科学基金(2214082); 北京市科技新星计划(2022057); 国家重点研发计划(2021YFC2802201)

PDF(3308 KB)

Accesses

Citation

Detail

段落导航
相关文章

/