聚羟基脂肪酸酯生产菌种及发酵工艺研究进展

龙婷婷, 庄新姝, 周桂雄, 翁庆北, 方正, 吴庆珊

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 145-154.

PDF(1244 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1244 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 145-154. DOI: 10.19912/j.0254-0096.tynxb.2022-1808

聚羟基脂肪酸酯生产菌种及发酵工艺研究进展

  • 龙婷婷1, 庄新姝2, 周桂雄1, 翁庆北1, 方正1, 吴庆珊1
作者信息 +

RESEARCH PROGRESS OF STRAINS PRODUCTED POLYHYDEOXYALKANOATES (PHAs) AND FERMENTATION TECHNOLOGY

  • Long Tingting1, Zhuang Xinshu2, Zhou Guixiong1, Weng Qingbei1, Fang Zheng1, Wu Qingshan1
Author information +
文章历史 +

摘要

首先对聚羟基脂肪酸酯(PHAs)发酵菌种的选育情况及发酵特性进行比较全面的介绍,对已报道过的发酵工艺进行系统性综述、比较及分析。最后,归纳目前利用微生物发酵生产PHAs存在的问题,并对PHAs发酵菌种及工艺的未来发展趋势及重点研究方向进行展望。

Abstract

Firstly, this article comprehensively describes the breeding and fermentation characteristics of Polyhydroxyalkanoates (PHAs) fermentation strains, and then provides a systematic summary, comparison and analysis of reported fermentation processes. Finally, the issues concerning microbial fermentation for PHAs production were summarized, and the future development trends and key research directions regarding PHAs fermentation strains and processes were prospected.

关键词

聚羟基脂肪酸酯 / 菌种选育 / 发酵工艺 / 高效率 / 低成本 / 研究进展

Key words

polyhydeoxyalkanoates / strain breeding / fermentation technology / high efficiency / low-cost / research progress

引用本文

导出引用
龙婷婷, 庄新姝, 周桂雄, 翁庆北, 方正, 吴庆珊. 聚羟基脂肪酸酯生产菌种及发酵工艺研究进展[J]. 太阳能学报. 2024, 45(3): 145-154 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1808
Long Tingting, Zhuang Xinshu, Zhou Guixiong, Weng Qingbei, Fang Zheng, Wu Qingshan. RESEARCH PROGRESS OF STRAINS PRODUCTED POLYHYDEOXYALKANOATES (PHAs) AND FERMENTATION TECHNOLOGY[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 145-154 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1808
中图分类号: Q939.97   

参考文献

[1] 佚名. 塑料循环利用技术开发的现状与前景[J]. 石油石化绿色低碳, 2019, 4(3): 24.
Anonymous. Present situation and prospect of plastic recycling technology development[J]. Green petroleum & petrochemicals, 2019, 4(3): 24.
[2] FLURY M, NARAYAN R.Biodegradable plastic as an integral part of the solution to plastic waste pollution of the environment[J]. Current opinion in green and sustainable chemistry, 2021, 30: 100490.
[3] CHOI T R, PARK Y L, SONG H S,et al.Fructose-based production of short-chain-length and medium-chain-length polyhydroxyalkanoate copolymer by Arctic pseudomonas sp. B14-6[J]. Polymers, 2021, 13(9): 1398.
[4] 陈心宇, 李梦怡, 陈国强. 聚羟基脂肪酸酯PHA代谢工程研究30年[J]. 生物工程学报, 2021, 37(5): 1794-1811.
CHEN X Y, LI M Y,CHEN G Q.Thirty years of metabolic engineering for biosynthesis of polyhydroxyalkanoates[J]. Chinese journal of biotechnology, 2021, 37(5): 1794-1811.
[5] CHEN G Q.Industrial production of PHA[M]. Berlin: Springer, 2010: 121-132.
[6] KAUR G, ROY I.Strategies for large-scale production of polyhydroxyalkanoates[J]. Chemical and biochemical engineering quarterly, 2015, 29(2): 157-172.
[7] LEMOIGNE M.Products of dehydration and of poiymerization of β-dehydroxybutyriacid[J]. Bulletin de la société de chimie biologique, 1926, 8: 700-782.
[8] CHAUDHRY W N, JAMIL N, ALI I, et al.Screening for polyhydroxyalkanoate(PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources[J]. Annals of microbiology, 2011, 61(3): 623-629.
[9] GOWDA V, SHIVAKUMAR S.Agrowaste-based polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077[J]. Brazilian archives of biology and technology, 2014, 57(1): 55-61.
[10] OJHA N, DAS N.Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate[J]. Biocatalysis and agricultural biotechnology, 2020, 27: 101616.
[11] REZK S, EMAM D, SWAILAM H, et al.Production of polyhydroxybutyrate (PHB) from streptomyces incanus and the effect of gamma irradiation on its production[J]. Arab journal of nuclear sciences and applications, 2020, 53(2): 111-117.
[12] STANLEY A, PUNIL KUMAR H N, MUTTURI S, et al. Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain[J]. Applied biochemistry and biotechnology, 2018, 184(3): 935-952.
[13] GATEA I H, SABR A B, ABDUL WAHED E A A, et al. Isolation and characterization of local Azotobacter isolate producing bio-plastics and consuming waste vegetable oils[J]. IOP conference series: earth and environmental science, 2019, 388(1): 012082.
[14] RATNANINGRUM D, SARASWATY V, PRIATNI S, et al.Screening of polyhydroxyalkanoates (PHA)-producing bacteria from soil bacteria strains[J]. IOP conference series: earth and environmental science, 2019, 277(1): 012003.
[15] WANG J, TAN H, LI K, et al.Two-stage fermentation optimization for poly-3-hydroxybutyrate production from methanol by a new Methylobacterium isolate from oil fields[J]. Journal of applied microbiology, 2020, 128(1): 171-181.
[16] ALJURAIFANI A A, BEREKAA M M, GHAZWANI A A.Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources[J]. MicrobiologyOpen, 2019, 8(6): e00755.
[17] GOWDA V, SHIVAKUMAR S.Agrowaste-based Polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077[J]. Brazilian archives of biology and technology, 2014, 57(1): 55-61.
[18] DIETRICH K, OLIVEIRA-FILHO E R, DUMONT M, et al. Increasing PHB production with an industrially scalable hardwood hydrolysate as a carbon source[J]. Industrial crops and products, 2020, 154: 112703.
[19] TAO G B, TAN B W, LI Z J.Production of polyhydroxyalkanoates by a moderately halophilic bacterium of Salinivibrio sp. TGB10[J]. International journal of biological macromolecules, 2021, 186: 574-579.
[20] PARK Y L, BHATIA S K, GURAV R, et al.Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies[J]. International journal of biological macromolecules, 2020, 154: 929-936.
[21] VALAPPIL S P, BOCCACCINI A R, BUCKE C, et al.Polyhydroxyalkanoates in Gram-positive bacteria: insights from the Genera Bacillus and Streptomyces[J]. Antonie van leeuwenhoek, 2007, 91(1): 1-17.
[22] MOHAPATRA S, PATTNAIK S, MAITY S, et al.Comparative analysis of PHAs production by Bacillus megaterium OUAT 016 under submerged and solid-state fermentation[J]. Saudi journal of biological sciences, 2020, 27(5): 1242-1250.
[23] DESUOKY A M, EL-HALEEM A, ZAKI S A, et al.Biosynthesis of polyhydroxyalkanotes in wildtype yeasts[J]. Journal of applied sciences and environmental management, 2007, 11(3): 5-10.
[24] TANANGTEERAPONG D, PRASATHINPIMAI P, SUEBTHAMMA W, et al.The potential of Rhodotorula graminis TISTR 5124 for synthesis of polyhydroxyalkanoate (PHA) by limitation of a phosphorus and nitrogen sourc[J]. International journal of technology, 2016, 7(7): 1214.
[25] ARAVIND J, SANGEETHA H S.A study on effect of mutagenic agents on polyhydroxyalkanoates(PHA) production[J]. Journal of microbiology, biotechnology and food sciences, 2014, 3(5): 384-386.
[26] SANGKHARAK K, PRASERTSAN P.The production of polyhydroxyalkanoate by Bacillus licheniformis using sequential mutagenesis and optimization[J]. Biotechnology and bioprocess engineering, 2013, 18(2): 272-279.
[27] DE PAULA F C, DE PAULA C B C, GOMEZ J G C, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel by-product and propionic acid by mutant strains of Pandoraea sp.[J]. Biotechnology progress, 2017, 33(4): 1077-1084.
[28] ZHANG X, LIN Y N, WU Q, et al.Synthetic biology and genome-editing tools for improving PHA metabolic engineering[J]. Trends in biotechnology, 2020, 38(7): 689-700.
[29] YE J W, HU D K, CHE X M, et al.Engineering of Halomonas bluephagenesis for low cost production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose[J]. Metabolic engineering, 2018, 47: 143-152.
[30] MOŻEJKO-CIESIELSKA J, SERAFIM L S. Proteomic response of Pseudomonas putida KT2440 to dual carbon-phosphorus limitation during mcl-PHAs synthesis[J]. Biomolecules, 2019, 9(12): 796.
[31] CHEN J Y, SONG G, CHEN G Q.A lower specificity PhaC2 synthase from Pseudomonas stutzeri catalyses the production of copolyesters consisting of short-chain-length and medium-chain-length 3-hydroxyalkanoates[J]. Antonie van leeuwenhoek, 2006, 89(1): 157-167.
[32] LING C, QIAO G Q, SHUAI B W, et al.Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA)[J]. Metabolic engineering, 2018, 49: 275-286.
[33] CHEN Y, CHEN X Y, DU H T, et al.Chromosome engineering of the TCA cycle in Halomonas bluephagenesis for production of copolymers of 3-hydroxybutyrate and 3-hydroxyvalerate(PHBV)[J]. Metabolic engineering, 2019, 54: 69-82.
[34] HARADA K, KOBAYASHI S, OSHIMA K, et al.Engineering of Aeromonas caviae polyhydroxyalkanoate synthase through site-directed mutagenesis for enhanced polymerization of the 3-hydroxyhexanoate unit[J]. Frontiers in bioengineering and biotechnology, 2021, 9: 627082.
[35] 王建莉. 革兰氏阴性细菌外膜关键分子对细胞全局调控及聚羟基脂肪酸酯合成效率的影响机制[D]. 无锡: 江南大学, 2019.
WANG J L.Mechanism of the influence of key molecules in the outer membrane of gram-negative bacteria on global regulation and polyhydroxyalkanoates production[D]. Wuxi: Jiangnan University, 2019.
[36] LI D, LYU L, CHEN J C, et al.Controlling microbial PHB synthesis via CRISPRi[J]. Applied microbiology and biotechnology, 2017, 101(14): 5861-5867.
[37] LIN J H, LEE M C, SUE Y S, et al.Cloning of phaCAB genes from thermophilic Caldimonas manganoxidans in Escherichia coli for poly (3-hydroxybutyrate)(PHB) production[J]. Applied microbiology and biotechnology, 2017, 101(16): 6419-6430.
[38] MARTLA M, UMSAKUL K, SUDESH K.Production and recovery of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from biodiesel liquid waste (BLW)[J]. Journal of basic microbiology, 2018, 58(11): 977-986.
[39] 潘兰佳, 李杰, 林清怀, 等. 贪铜菌利用混合餐厨废油合成聚羟基丁酸酯[J]. 生物技术通报, 2021, 37(4): 127-136.
PAN L J, LI J, LIN Q H, et al.Polyhydroxybutyrate production from mixed waste cooking oil by Cupriavidus necator[J]. Biotechnology bulletin, 2021, 37(4): 127-136.
[40] SARATALE R G, SARATALE G D, CHO S K, et al.Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization[J]. Bioresource technology, 2019, 282: 75-80.
[41] SAWANT S S, SALUNKE B K, KIM B S.Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1[J]. Bioresource technology, 2015, 194: 247-255.
[42] SCHMID M T, SYKACEK E, O’CONNOR K, et al. Pilot scale production and evaluation of mechanical and thermal properties of P(3HB) from Bacillus megaterium cultivated on desugarized sugar beet molasses[J]. Journal of applied polymer science, 2022, 139(3): 51503.
[43] HUONG K H, AZURAINI M J, AZIZ N A, et al.Pilot scale production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) biopolymers with high molecular weight and elastomeric properties[J]. Journal of bioscience and bioengineering, 2017, 124(1): 76-83.
[44] KEK Y K, CHANG C W, AMIRUL A A, et al.Heterologous expression of Cupriavidus sp. USMAA2-4 PHA synthase gene in PHB-4 mutant for the production of poly(3-hydroxybutyrate) and its copolymers[J]. World journal of microbiology and biotechnology, 2010, 26(9): 1595-1603.
[45] YANG J E, PARK S J, KIM W J, et al.One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains[J]. Nature communications, 2018, 9(1): 79.
[46] MUNIR S, JAMIL N.Polyhydroxyalkanoates(PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source[J]. Journal of basic microbiology, 2018, 58(3): 247-254.
[47] 郑冰心. PHA生产菌株的选育及其混合发酵条件的优化[D]. 石河子: 石河子大学, 2014.
ZHENG B X.Screening and Optimizing fermentation conditions for polyhydroxyalkanoates-producing by microbial mixed culture[D]. Shihezi: Shihezi University, 2014.
[48] SOTO L R, BYRNE E, VAN NIEL E W J, et al. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process[J]. Bioresource technology, 2019, 272: 259-266.
[49] 靳大耀. 恶臭假单胞菌和其混菌以甘油为底物合成PHA发酵条件的优化[D]. 天津: 天津大学, 2018.
JIN D Y.Optimization of fermentation conditions for synthesizing PHA from glycerol by Pseudomonas putida and its mixed consortium[D]. Tianjin: Tianjin University, 2018.
[50] TU W M, ZHANG D D, WANG H.Polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge by mixed microbial cultures: the link between phosphorus and PHA yields[J]. Waste management, 2019, 96: 149-157.
[51] JIA Q Q, XIONG H L, WANG H, et al.Production of polyhydroxyalkanoates(PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales[J]. Bioresource technology, 2014, 171: 159-167.
[52] FAHIMA AZIRA T M, NURSOLEHAH A A, NORHAYATI Y, et al. Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) terpolymer by Cupriavidus sp. USMAA2-4 through two-step cultivation process[J]. World journal of microbiology and biotechnology, 2011, 27(10): 2287-2295.
[53] SAHA S P, PATRA A, GHOSH P B, et al.Accumulation of polyhydroxyalkanoic acids by Azotobacter chroococcum mal-201 from organic waste[J]. Journal of microbiology, biotechnology and food sciences, 2013, 3(1): 44-48.
[54] LI M X, WILKINS M R.Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and Arabinose[J]. Bioprocess and biosystems engineering, 2021, 44(1): 185-193.
[55] HUSCHNER F, GROUSSEAU E, BRIGHAM C J, et al.Development of a feeding strategy for high cell and PHA density fed-batch fermentation of Ralstonia eutropha H16 from organic acids and their salts[J]. Process biochemistry, 2015, 50(2): 165-172.
[56] WISUTHIPHAET N, NAPATHORN S C.Optimisation of the use of products from the cane sugar industry for poly (3-hydroxybutyrate) production by Azohydromonas lata DSM 1123 in fed-batch cultivation[J]. Process biochemistry, 2016, 51(3): 352-361.
[57] KARASAVVAS E, CHATZIDOUKAS C.Model-based dynamic optimization of the fermentative production of polyhydroxyalkanoates (PHAs) in fed-batch and sequence of continuously operating bioreactors[J]. Biochemical engineering journal, 2020, 162: 107702.
[58] OBRUCA S, PETRIK S, BENESOVA P, et al.Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates[J]. Applied microbiology and biotechnology, 2014, 98(13): 5883-5890.
[59] KACHRIMANIDOU V, KOPSAHELIS N, PAPANIKOLAOU S, et al.Sunflower-based biorefinery: Poly(3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production from crude glycerol, sunflower meal and levulinic acid[J]. Bioresource technology, 2014, 172: 121-130.
[60] HUO G X, ZHU Y H, LIU Q J, et al.Metabolic engineering of an E. coli ndh knockout strain for PHB production from mixed glucose-xylose feedstock[J]. Journal of chemical technology & biotechnology, 2017, 92(10): 2739-2745.
[61] GARCÍA A, SEGURA D, ESPÍN G, et al. High production of poly-β-hydroxybutyrate (PHB) by an Azotobacter vinelandii mutant altered in PHB regulation using a fed-batch fermentation process[J]. Biochemical engineering journal, 2014, 82: 117-123.
[62] NARESH KUMAR A, KIM G B, MUHORAKEYE A, et al.Biopolymer production using volatile fatty acids as resource: effect of feast-famine strategy and lignin reinforcement[J]. Bioresource technology, 2021, 326: 124736.
[63] KORKAKAKI E, VAN LOOSDRECHT M C M, KLEEREBEZEM R. Impact of phosphate limitation on PHA production in a feast-famine process[J]. Water research, 2017, 126: 472-480.
[64] RUEDA E, GARCÍA J. Optimization of the phototrophic Cyanobacteria polyhydroxybutyrate (PHB) production by kinetic model simulation[J]. Science of the total environment, 2021, 800: 149561.
[65] KOLLER M, MUHR A.Continuous production mode as a viable process-engineering tool for efficient poly (hydroxyalkanoate) (PHA) bio-production[J]. Chemical and biochemical engineering quarterly, 2014, 28(1): 65-77.
[66] MARTÍNEZ-AVILA O, LLIMÓS J, PONSÁ S. Integrated solid-state enzymatic hydrolysis and solid-state fermentation for producing sustainable polyhydroxyalkanoates from low-cost agro-industrial residues[J]. Food and bioproducts processing, 2021, 126: 334-344.
[67] FRADINHO J C, OEHMEN A, REIS M A M. Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions[J]. International journal of biological macromolecules, 2019, 126: 1085-1092.
[68] ALMEIDA J R, SERRANO E, FERNANDEZ M, et al.Polyhydroxyalkanoates production from fermented domestic wastewater using phototrophic mixed cultures[J]. Water research, 2021, 197: 117101.
[69] LIU C L, LIU D, QI Y J, et al.The effect of anaerobic-aerobic and feast-famine cultivation pattern on bacterial diversity during poly-β-hydroxybutyrate production from domestic sewage sludge[J]. Environmental science and pollution research, 2016, 23(13): 12966-12975.

基金

贵州省科技计划(基础研究)(黔科合基础([2019]1219))

PDF(1244 KB)

Accesses

Citation

Detail

段落导航
相关文章

/