基于灰度聚类的光伏红外热斑图像分割方法

谢七月, 孙武彪, 申忠利, 周育才

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 117-124.

PDF(2204 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2204 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 117-124. DOI: 10.19912/j.0254-0096.tynxb.2022-1809

基于灰度聚类的光伏红外热斑图像分割方法

  • 谢七月1, 孙武彪2, 申忠利1, 周育才1
作者信息 +

PHOTOVOLTAIC INFRARED HOT SPOT IMAGE SEGMENTATION METHOD BASED ON GRAY CLUSTERING

  • Xie Qiyue1, Sun Wubiao2, Shen Zhongli1, Zhou Yucai1
Author information +
文章历史 +

摘要

针对光伏红外热斑检测问题,提出一种曲线拟合结合图像聚类的热斑红外图像处理方法。首先,将图像灰度变换处理后,采用高斯最小二乘拟合确定聚类中心点;然后,针对传统模糊C均值噪声鲁棒性较差的特点,加入邻域空间影响以及用核距离代替欧式距离的模糊C均值算法对热斑图像进行聚类;最后,根据拟合图进行灰度多阈值分割。实验结果表明:该方法能将光伏组件损坏程度进行量化,区域进行分层,抑制红外图像噪声,提高检测热斑效率的同时,分割准确率可达86%以上。

Abstract

For the photovoltaic infrared hot spot detection problem, this paper proposes a curve fitting combined with image clustering of the hot spot infrared image processing methods. Firstly, after image gray scale transformation, Gaussian least square fitting was used to determine the clustering center. In view of the poor robustness of traditional FCM noise, the hot spot images were clustered by adding the influence of neighborhood space and substituting the Euclidean distance with the kernel distance. Finally, the gray multi-threshold segmentation was carried out according to the fitting graph. The experimental results show that the method can quantify the damage degree of photovoltaic modules, regional stratification, suppress infrared image noise, improve the efficiency of hot spot detection with the segmentation accuracy of more than 86%.

关键词

光伏组件 / 红外成像 / 曲线拟合 / 聚类算法 / 阈值分割 / 热斑

Key words

photovoltaic modules / infrared imaging / curve fitting / clustering algorithms / threshold segmentation / hot spot

引用本文

导出引用
谢七月, 孙武彪, 申忠利, 周育才. 基于灰度聚类的光伏红外热斑图像分割方法[J]. 太阳能学报. 2023, 44(9): 117-124 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1809
Xie Qiyue, Sun Wubiao, Shen Zhongli, Zhou Yucai. PHOTOVOLTAIC INFRARED HOT SPOT IMAGE SEGMENTATION METHOD BASED ON GRAY CLUSTERING[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 117-124 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1809
中图分类号: TK514   

参考文献

[1] 翁捷, 刘恒, 张志祥, 等. 光伏组件热斑电池片功率损耗的简化算法研究[J]. 电源学报, 2020, 18(1): 74-80.
WENG J, LIU H, ZHANG Z X, et al.Study on simplified algorithm for power loss of hot-spot cells in PV module[J]. Journal of power supply, 2020, 18(1): 74-80.
[2] 蔡洁聪, 吕洪坤, 朱凌云, 等. 光伏发电站热斑检测技术综述[J]. 电源技术, 2021, 45(5): 683-685.
CAI J C, LYU H K, ZHU L Y, et al.Review of hot spot detection technology in photovoltaic power station[J]. Chinese journal of power sources, 2021, 45(5): 683-685.
[3] HEPP J, MACHUI F, EGELHAAF H J, et al.Automatized analysis of IR-images of photovoltaic modules and its use for quality control of solar cells[J]. Energy science & engineering, 2016, 4(6): 363-371.
[4] MANNO D, CIPRIANI G, CIULLA G, et al.Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images[J]. Energy conversion and management, 2021, 241: 114315.
[5] ZEFRI Y, ELKETTANI A, SEBARI I, et al.Thermal infrared and visual inspection of photovoltaic installations by UAV photogrammetry: application case: Morocco[J]. Drones, 2018, 2(4): 41.
[6] WANG A, XUAN Y M.Close examination of localized hot spots within photovoltaic modules[J]. Energy conversion and management, 2021, 234: 113959.
[7] NGO G C, MACABEBE E Q B. Image segmentation using K-means color quantization and density-based spatial clustering of applications with noise (DBSCAN) for hotspot detection in photovoltaic modules[C]//2016 IEEE Region 10 Conference (TENCON), Singapore, 2016.
[8] AFIFAH A N N, INDRABAYU, SUYUTI A, et al. A new approach for hot spot solar cell detection based on multi-level Otsu algorithm[C]//2021 International Seminar on Intelligent Technology and Its Applications(ISITIA), Surabaya, Indonesia, 2021: 278-282.
[9] 王培珍, 王群京, 杨维翰. 太阳能光伏阵列红外图像的特征提取[J]. 合肥工业大学学报(自然科学版), 2004, 27(10): 1187-1190.
WANG P Z,WANG Q J,YANG W H.A method for the feature extraction of the infrared image of the photovoltaic array[J]. Journal of Hefei University of Technology(natural science), 2004, 27(10): 1187-1190.
[10] VETTER A, HEPP J, BRABEC C J.Automatized segmentation of photovoltaic modules in IR-images with extreme noise[J]. Infrared physics & technology, 2016, 76: 439-443.
[11] 蒋琳, 苏建徽, 施永, 等. 基于红外热图像处理的光伏阵列热斑检测方法[J]. 太阳能学报, 2020, 41(8): 180-184.
JIANG L, SU J H, SHI Y, et al.Hot spots detection of operating PV arrays through IR thermal image[J]. Acta energiae solaris sinica, 2020, 41(8): 180-184.
[12] 柳扬, 陈美珍, 徐胜彬, 等. 基于热成像与灰度转换技术的光伏阵列缺陷检测方法[J]. 电子测量技术, 2021, 44(11): 96-102.
LIU Y, CHEN M Z, XU S B, et al.Defect detection method for photovoltaic arrays based on thermal imaging and gray conversion technology[J]. Electronic measurement technology, 2021, 44(11): 96-102.
[13] AHMED M N, YAMANY S M, MOHAMED N, et al.A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE transactions on medical imaging, 2002, 21(3): 193-199.
[14] SUN H, YI J Y, XU Y, et al.Crack monitoring for hot-spot areas under time-varying load condition based on FCM clustering algorithm[J]. IEEE access, 2019, 7: 118850-118856.
[15] 唐冲, 惠辉辉. 基于Matlab的高斯曲线拟合求解[J]. 计算机与数字工程, 2013, 41(8): 1262-1263, 1297.
TANG C, HUI H H.Gaussian curve fitting solution based on Matlab[J]. Computer & digital engineering, 2013, 41(8): 1262-1263, 1297.
[16] 毛峡, 石天朋. 光伏热斑图像有效区域分割算法研究[J]. 太阳能学报, 2018, 39(5): 1270-1276.
MAO X, SHI T P.Research on segmentation algorithm of effective region in photovoltaic hot spot image[J]. Acta energiae solaris sinica, 2018, 39(5): 1270-1276.
[17] CHEN S C, ZHANG D Q.Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE transactions on systems, man, and cybernetics, part B(cybernetics), 2004, 34(4): 1907-1916.
[18] ALFARO M E, LOAIZA C H, FRANCO M E, et al.Dataset for recognition of snail trails and hot spot failures in monocrystalline Si solar panels[J]. Data in brief, 2019, 26: 104441.
[19] AFIFAH A N N, INDRABAYU, SUYUTI A, et al. Hotspot detection in photovoltaic module using Otsu thresholding method[C]//2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), Batam, Indonesia, 2020.
[20] 顾振飞, 袁小燕, 张登银, 等. 一种基于区域显著性识别的红外图像增强方法[J]. 江苏大学学报(自然科学版), 2019, 40(6): 681-687.
GU Z F, YUAN X Y, ZHANG D Y, et al.Infrared image enhancement method based on regional saliency recognition[J]. Journal of Jiangsu University(natural science edition), 2019, 40(6): 681-687.
[21] 蔺怡, 欧阳名三, 汪义鹏, 等. 基于主成分分析的光伏热斑红外图像混合噪声去噪方法[J/OL]. 重庆工商大学学报(自然科学版), 2022:1-9(2022-12-27). http://kns.cnki.net/kcms/detail/50.1155.N.20221226.1132.002.html.
LIN Y, OUYANG M S, WANG Y P, et al. Hybrid noise denoising method for photovoltaic hot spot infrared image based on principal component analysis[J/OL]. Journal of Chongqing Technology and Business University(natural science edition), 2022:1-9(2022-12-27). http://kns.cnki.net/kcms/detail/50.1155.N.20221226.1132.002.html.
[22] HE Y Z, DU B L, HUANG S D.Noncontact electromagnetic induction excited infrared thermography for photovoltaic cells and modules inspection[J]. IEEE transactions on industrial informatics, 2018, 14(12): 5585-5593.

基金

湖南省自然科学基金(2021JJ30740)

PDF(2204 KB)

Accesses

Citation

Detail

段落导航
相关文章

/