该文采用一步水热法在泡沫镍表面原位生长V掺杂的镍铁层状双氢氧化物(NiFe LDH),结合H2等离子体还原法,构建Ni纳米粒子锚定在大量氧空位和镍空位上的异质结构,增加活性位点数量,提升NiFe LDH的HER活性。结果表明,在1 mol/L的KOH电解液中电流密度为10 mA/cm2下催化剂的过电势仅为37.5 mV,Tafel斜率为49 mV/dec,经过100 h的恒电流测试其析氢活性无明显衰减。此外,全解水测试中其同样具有良好的析氢活性和稳定性,10 mA/cm2电流密度下全解水电压仅为1.57 V,经过1000 h的恒电流测试其析氢活性无明显下降。
Abstract
In this study, V-doped nickel-iron layered double hydroxide (NiFe LDH) grows in situ on the surface of nickel foam by one-step hydrothermal method, combines with H2 plasma reduction, to construct a heterostructure of Ni nanoparticles anchored to a large number of oxygen vacancies and nickel vacancies, increase the number of active sites, and enhance the HER activity of NiFe LDH. The results show that the overpotential of the catalyst at a current density of 10 mA/cm2 in a 1 mol/L KOH electrolyte is only 37.5 mV, and the Tafel slope is 49 mV/dec, and its hydrogen evolution activity is not significantly attenuated after 100 h constant current test. In addition, it also has good hydrogen evolution activity and stability in the total hydrolysis test, and the total hydrolysis voltage at a current density of 10 mA/cm2 is only 1.57 V, and its hydrogen evolution activity does not decrease significantly after 1000 h constant current test.
关键词
等离子体 /
镍铁氢氧化物 /
电催化剂 /
析氢反应 /
异质结
Key words
plasma /
nickel-iron hydroxide /
electrocatalyst /
hydrogen evolution reaction /
heterojunction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 曾升, 李进, 王鑫, 等. 中国氢能利用技术进展及前景展望[J]. 电源技术, 2022, 46(7): 716-722.
ZENG S, LI J, WANG X, et al.Progress and prospect of hydrogen energy utilization technology in China[J]. Chinese journal of power sources, 2022, 46(7): 716-722.
[2] 王翔, 张雪影. 基于专利视角下我国氢能产业现状研究[J]. 环境保护与循环经济, 2022, 42(7): 13-17.
WANG X, ZHANG X Y.Research on the present situation of China’s hydrogen energy industry from the perspective of patents[J]. Environmental protection and circular economy, 2022, 42(7): 13-17.
[3] 李建林, 李光辉, 马速良, 等. 碳中和目标下制氢关键技术进展及发展前景综述[J]. 热力发电, 2021, 50(6): 1-8.
LI J L, LI G H, MA S L, et al.Overview of the progress and development prospects of key technologies for hydrogen production under the goal of carbon neutrality[J]. Thermal power generation, 2021, 50(6): 1-8.
[4] 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
CAO J W, ZHANG W Q, LI Y F, et al.Current status of hydrogen production in China[J]. Progress in chemistry, 2021, 33(12): 2215-2244.
[5] 王培灿, 万磊, 徐子昂, 等. 碱性膜电解水制氢技术现状与展望[J]. 化工学报, 2021, 72(12): 6161-6175.
WANG P C, WAN L, XU Z A, et al.Hydrogen production based-on anion exchange membrane water electrolysis: a critical review and perspective[J]. CIESC journal, 2021, 72(12): 6161-6175.
[6] YAN W J, ZHANG J T, LÜ A J, et al.Self-supporting and hierarchically porous NixFe-S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting[J]. International journal of minerals, metallurgy and materials, 2022, 29(5): 1120-1131.
[7] 李彩彩. 基于镍、钴、钼的纳米结构的合成及其电解水性能研究[D]. 武汉: 华中科技大学, 2018.
LI C C.Synthesis of Ni, Co and Mo-based nanostructures for water splitting[D]. Wuhan: Huazhong University of Science and Technology, 2018.
[8] CHENG P F, FENG T, LIU Z W, et al.Laser-direct-writing of 3D self-supported NiS2/MoS2 heterostructures as an efficient electrocatalyst for hydrogen evolution reaction in alkaline and neutral electrolytes[J]. Chinese journal of catalysis, 2019, 40(8): 1147-1152.
[9] LI Y B, TAN X, CHEN S, et al.Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution[J]. Angewandte Chemie (international Ed in English), 2019, 58(2): 461-466.
[10] PAN Y, SUN K A, LIN Y, et al.Electronic structure and d-band center control engineering over M-doped CoP (M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production[J]. Nano energy, 2019, 56: 411-419.
[11] YANG C F, ZHAO R, XIANG H, et al.Transition metal carbides: Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions[J]. Advanced energy materials, 2020, 10(37): 2002260.
[12] ZENG Y, CAO Z, LIAO J Z, et al.Construction of hydroxide pn junction for water splitting electrocatalysis[J]. Applied catalysis B: environmental, 2021, 292: 120160.
[13] WANG Z L, QIAN G F, YU T Q, et al.Carbon encapsulated FeWO4-Ni3S2 nanosheets as a highly active catalyst for overall water splitting at large current density[J]. Chemical engineering journal, 2022, 434: 134669.
[14] YANG Z, LIN Y, JIAO F X, et al.In situ growth of 3D walnut-like nano-architecture Mo-Ni2P@NiFe LDH/NF arrays for synergistically enhanced overall water splitting[J]. Journal of energy chemistry, 2020, 49: 189-197.
[15] 郭文君, 李丹丹, 王强, 等. NiCoFe LDH阳极析氧催化剂的制备及性能研究[J]. 太阳能学报, 2021, 42(5): 46-53.
GUO W J, LI D D, WANG Q, et al.Preparation and properties of ni co fe ldh anodic oxygen evolution catalyst[J]. Acta energiae solaris sinica, 2021, 42(5): 46-53.
[16] LIN Y, SUN K A, CHEN X M, et al.High-precision regulation synthesis of Fe-doped Co2P nanorod bundles as efficient electrocatalysts for hydrogen evolution in all-pH range and seawater[J]. Journal of energy chemistry, 2021, 55: 92-101.
[17] SEKHON S S, LEE J, PARK J S.Biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reaction: a review[J]. Journal of energy chemistry, 2022, 65: 149-172.
[18] 邹吉军. 等离子体处理制备高效催化剂的基础研究[D]. 天津: 天津大学, 2005.
ZOU J J.On the preparation of highly efficient catalysts using cold plasma treatment[D]. Tianjin: Tianjin University, 2005.
[19] ZHANG W, LI D H, ZHANG L Z, et al.NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions[J]. Journal of energy chemistry, 2019, 39: 39-53.