光伏组件安装设备作为新型特种设备,为减小系统振动、保证光伏组件稳定精确安装,针对动力传动系统中行星轮系双功率输入的微调工况,采用集中质量法,考虑时变啮合刚度、齿侧间隙等非线性因素,建立平移-扭转非线性动力学模型,在此基础上研究各轮齿的制造、安装误差对轮系的振动及均载特性影响。研究表明:当存在制造安装误差时,太阳轮浮动可自动定心适应误差影响,在行星架误差下太阳轮偏离理论原点最远;行星轮误差对系统响应影响最为显著,相较于其他部件误差产生的振动位移存在量级差异;所有行星轮均产生相同误差时系统的均载特性优于仅有单一行星轮误差。
Abstract
Photovoltaic module installation equipment is a new type of special equipment. In order to reduce the vibration of the system and ensure the stable and accurate installation of the photovoltaic module, aiming at the fine-tuning condition of the dual power input of the planetary gear train in the power transmission system, this paper adopts the lumped mass method, considering the time-varying meshing stiffness, tooth side clearance and other nonlinear factors, a translation-torsion nonlinear dynamic model is established. On this basis, the influence of manufacturing and installation errors of each gear tooth on the vibration and load sharing characteristics of the gear train is studied. The research shows that when there are manufacturing and installation errors, the floating sun gear can automatically center to adapt to the influence of errors, and the sun gear deviates the farthest from the theoretical origin under the planet carrier error. Planetary gear error has the most significant impact on the system response, compared with other parts of the vibration displacement generated by the error magnitude difference. When all planetary gears produce the same error, the load sharing characteristics of the system will be better than that of a single planetary gear error.
关键词
光伏组件 /
误差 /
数学模型 /
行星轮系 /
均载特性
Key words
photovoltaic modules /
error /
mathematical models /
planetary gears /
load sharing characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴小平, 翁晓军, 黄松和, 等. 一种光伏组件智能安装系统: CN217256312U[P].2022-08-23.
WU X P, WENG X J, HUANG S H, et al. Intelligent installation system for photovoltaic modules: CN217256312U[P].2022-08-23.
[2] MONTESTRUC A N.Influence of planet pin stiffness on load sharing in planetary gear drives[J]. Journal of mechanical design, 2011, 133(1): 1.
[3] MO S, ZHANG T, JIN G G, et al.Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear[J]. Mechanism and machine theory, 2020, 144: 103670.
[4] 刘向阳, 周建星, 章翔峰, 等. 考虑齿圈柔性的风电机组行星传动均载特性与灵敏度分析[J]. 太阳能学报, 2021, 42(7): 340-349.
LIU X Y, ZHOU J X, ZHANG X F, et al.Analysis of load sharing characteristics and sensitivity of planetary transmission of wind turbine considering flexibility of gear ring[J]. Acta energiae solaris sinica, 2021, 42(7): 340-349.
[5] 陆俊华, 朱如鹏, 靳广虎. 行星传动动态均载特性分析[J]. 机械工程学报, 2009, 45(5): 85-90.
LU J H, ZHU R P, JIN G H.Analysis of dynamic load sharing behavior in planetary gearing[J]. Journal of mechanical engineering, 2009, 45(5): 85-90.
[6] 孙占飞, 周建星, 章翔峰, 等. 计入齿形误差的风电机组行星齿轮传动系统动态特性研究[J]. 太阳能学报, 2022, 43(3): 315-322.
SUN Z F, ZHOU J X, ZHANG X F, et al.Study on dynamic characteristics of wind turbine planetary gear transmission system considering tooth shape error[J]. Acta energiae solaris sinica, 2022, 43(3): 315-322.
[7] 乔帅, 周建星, 章翔峰, 等. 风电机组中两级齿轮传动系统动态温度响应与实验研究[J]. 太阳能学报, 2022, 43(1): 116-124.
QIAO S, ZHOU J X, ZHANG X F, et al.Dynamic temperature response and experimental study of two-stage gear transmission system in wind turbine[J]. Acta energiae solaris sinica, 2022, 43(1): 116-124.
[8] 董惠敏, 夏永, 李亚美, 等. 基于ADAMS仿真驱动的8MW风电齿轮箱均载设计[J]. 机械传动, 2015, 39(7): 53-58.
DONG H M, XIA Y, LI Y M, et al.Load sharing design of 8 MW wind power gearbox based on ADAMS simulation driving[J]. Journal of mechanical transmission, 2015, 39(7): 53-58.
[9] 赵大兴, 袁康, 吴震宇, 等. 主要误差因素对RV减速器的传动特性影响研究[J]. 机械传动, 2018, 42(11): 147-151.
ZHAO D X, YUAN K, WU Z Y, et al.Study on the effects of main error factor on the transmission characteristic of RV reducer[J]. Journal of mechanical transmission, 2018, 42(11): 147-151.
[10] 林超, 蔡志钦. 多齿啮合行星机构的传动精度分析[J]. 华南理工大学学报(自然科学版), 2014, 42(1): 35-40, 46.
LIN C, CAI Z Q.Transmission precision analysis of planetary mechanism with multi-tooth meshing[J]. Journal of South China University of Technology (natural science edition), 2014, 42(1): 35-40, 46.
[11] 黄祝庆. 基于多体动力学的齿轮副建模与实验研究[D]. 南京: 南京航空航天大学, 2013.
HUANG Z Q.Research on modeling of gear pair based on multi-body dynamics and experiments[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[12] 李宽阳, 陈彩凤, 张亮, 等. 行星齿轮系统时变啮合刚度研究[J]. 通信电源技术, 2015, 32(5): 90-92, 95.
LI K Y, CHEN C F, ZHANG L, et al.Research on the time-varying mesh stiffness of planetary gear[J]. Telecom power technology, 2015, 32(5): 90-92, 95.
[13] 周浩, 杨大炼, 蒋玲莉, 等. 几种典型齿轮时变啮合刚度计算方法对比[J]. 湖南科技大学学报(自然科学版), 2021, 36(4): 62-70.
ZHOU H, YANG D L, JIANG L L, et al.A comparation of several typical gear mesh stiffness calculation methods[J]. Journal of Hunan University of Science and Technology (natural science edition), 2021, 36(4): 62-70.
[14] 王羽达, 吕宏展, 侯志勇, 等. 渐开线直齿轮啮合接触计算与分析[J]. 机械传动, 2021, 45(12): 41-47.
WANG Y D, LYU H Z, HOU Z Y, et al.Calculation and analysis of meshing contact of involute spur gear[J]. Journal of mechanical transmission, 2021, 45(12): 41-47.
[15] 王增杰. 风电增速箱传动系统的动力学分析与仿真研究[D]. 西安: 西安理工大学, 2018.
WANG Z J.Dynamic analysis and simulation research for wind turbine gear transmission system[D]. Xi’an: Xi’an University of Technology, 2018.
[16] 董皓, 方宗德, 胡亚辉, 等. 面齿轮四分支传动系统均载特性分析[J]. 太阳能学报, 2020, 41(7): 282-290.
DONG H, FANG Z D, HU Y H, et al.Load sharing characteristics analysis of face gear four-branching transmission[J]. Acta energiae solaris sinica, 2020, 41(7): 282-290.
[17] 朱增宝, 江志祥, 尹敏. 支撑刚度对行星传动系统动态均载特性的影响[J]. 航空动力学报, 2016, 31(4): 986-992.
ZHU Z B, JIANG Z X, YIN M.Impact of support stiffness on dynamic load sharing characteristics of planetary train system[J]. Journal of aerospace power, 2016, 31(4): 986-992.
基金
四川省科技技术项目(2019YFSY0003)