药渣木质素定向解聚制备高密度航油合成原料

简雅婷, 王帆, 陈小燕, 张宇, 余强, 袁振宏

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 163-168.

PDF(1664 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1664 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 163-168. DOI: 10.19912/j.0254-0096.tynxb.2022-1815

药渣木质素定向解聚制备高密度航油合成原料

  • 简雅婷1,2, 王帆2, 陈小燕2, 张宇2, 余强3, 袁振宏2
作者信息 +

PREPARATION OF FEEDSTOCK FOR HIGH DENSITY JET FUEL SYNTHESIS BY TARGETED DEPOLYMERIZATION OF LIGNIN FROM PHARMACEUTICAL RESIDUES

  • Jian Yating1,2, Wang Fan2, Chen Xiaoyan2, Zhang Yu2, Yu Qiang3, Yuan Zhenhong2
Author information +
文章历史 +

摘要

以三叉苦药渣木质素为原料,在低共熔溶剂(ChCl-MeOH-AlCl3·6H2O)与催化剂(Cu(OAc)2/邻菲罗啉)耦合作用下解聚生成高密度航油合成原料,考察不同反应温度、时间、固液比、催化剂添加量与氧气含量对木质素催化氧化解聚效果的影响。结果表明:在固液比1∶30 g/mL,木质素、Cu(OAc)2、邻菲罗啉的质量比1∶1∶1,3 MPa氧压,60 ℃条件下反应3 h后,木质素选择性解聚生了芳香醛酮类高密度航油合成原料,木质素转化率达到80.84%,香草乙酮与香草醛收率分别为16.69%和34.39%。

Abstract

Herein, Lignin from evodia lepta was used as raw material to depolymerize under the coupling of deep eutectic solvent (ChCl-MeOH-AlCl3·6H2O) and catalyst (Cu(OAc)2/1,10-phenanthroline) to generate feedstock for synthesising high-density jet fuel , and the effects of different reaction temperatures, times, solid-liquid ratios, catalyst additions and oxygen pressures on the catalytic oxidative depolymerization of lignin were investigated. The results showed that under the conditions of solid-liquid ratio of 1∶30 g/mL, mass ratio of lignin to Cu(OAc)2 and 1,10-phenanthroline of 1∶1∶1, oxygen pressure of 3 MPa and 60 ℃ for 3 h, the lignin was selectively depolymerized to produce aromatic aldehydes and ketones used as feedstock for synthesizing high-density jet fuel. The lignin conversion rate reached 80.84%, and the yields of acetovanillone and vanillin were 16.69% and 34.39%, respectively.

关键词

生物质 / 木质素 / 氧化解聚 / 低共熔溶剂

Key words

biomass / lignin / oxidative depolymerization / deep eutectic solvents

引用本文

导出引用
简雅婷, 王帆, 陈小燕, 张宇, 余强, 袁振宏. 药渣木质素定向解聚制备高密度航油合成原料[J]. 太阳能学报. 2024, 45(3): 163-168 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1815
Jian Yating, Wang Fan, Chen Xiaoyan, Zhang Yu, Yu Qiang, Yuan Zhenhong. PREPARATION OF FEEDSTOCK FOR HIGH DENSITY JET FUEL SYNTHESIS BY TARGETED DEPOLYMERIZATION OF LIGNIN FROM PHARMACEUTICAL RESIDUES[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 163-168 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1815
中图分类号: TK6   

参考文献

[1] DUAN D L, ZHANG Y Y, LEI H W, et al.Renewable jet-fuel range hydrocarbons production from co-pyrolysis of lignin and soapstock with the activated carbon catalyst[J]. Waste management, 2019, 88: 1-9.
[2] ZHAO C, BRÜCK T, LERCHER J A. Catalytic deoxygenation of microalgae oil to green hydrocarbons[J]. Green chemistry, 2013, 15(7): 1720-1739.
[3] SUTHAR S, SINGH D.Phytotoxicity of composted herbal pharmaceutical industry wastes[J]. Environmental science and pollution research, 2012, 19(7): 3054-3059.
[4] 杨冰, 丁斐, 李伟东, 等. 中药渣综合利用研究进展及生态化综合利用模式[J]. 中草药, 2017, 48(2): 377-383.
YANG B, DING F, LI W D, et al.Research progress on comprehensive utilization of Chinese medicine residue and ecological comprehensive utilization pattern[J]. Chinese traditional and herbal drugs, 2017, 48(2): 377-383.
[5] SHU R Y, LI R X, LIN B Q, et al.A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels[J]. Biomass and bioenergy, 2020, 132: 105432.
[6] CHEN M Y, HUANG Y B, PANG H A, et al.Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems[J]. Green chemistry, 2015, 17(3): 1710-1717.
[7] KAUSAR S, ALI ALTAF A, HAMAYUN M, et al.Soft template-based bismuth doped zinc oxide nanocomposites for photocatalytic depolymerization of lignin[J]. Inorganica chimica acta, 2020, 502: 119390.
[8] YAGHOUBI K, PAZOUKI M, SHOJAOSADATI S A.Variable optimization for biopulping of agricultural residues by Ceriporiopsis subvermispora[J]. Bioresource technology, 2008, 99(10): 4321-4328.
[9] 蒋晓燕, 陆强, 楚化强, 等. 磷酸催化热解木质素模化物的反应机理研究[J]. 太阳能学报, 2020, 41(2): 6-12.
JIANG X Y, LU Q, CHU H Q, et al.Mechanism study on pyrolysis of lignin model compound catalyzed by phosphoric acid[J]. Acta energiae solaris sinica, 2020, 41(2): 6-12.
[10] 马巧智, 李文志, 刘启予, 等. 多种金属修饰的Ce/MCM-41催化解聚木质素的研究[J]. 太阳能学报, 2017, 38(8): 2040-2046.
MA Q Z, LI W Z, LIU Q Y, et al.Study of catalytic depolymerization of lignin by various metal-modified Ce/MCM-41[J]. Acta energiae solaris sinica, 2017, 38(8): 2040-2046.
[11] 王晋东, 李文志, 杜志杰, 等. Ni-S2O82-/TiO2固体超强酸催化解聚木质素的研究[J]. 太阳能学报, 2017, 38(4): 867-873.
WANG J D, LI W Z, DU Z J, et al.Study of lignin catalytic depolymerization by solid superacid Ni-S2O82-/TiO2[J]. Acta energiae solaris sinica, 2017, 38(4): 867-873.
[12] HE M Y, LUO Z C, WU L B, et al.Advances in depolymerization and hydrodeoxygenation of lignin[J]. Scientia sinica chimica, 2015, 45(5): 510-525.
[13] 宋振龙, 王帆, 陈小燕, 等. 氯化胆碱/对香豆酸低共熔溶剂预处理中药渣提高木质素脱出率的研究[J]. 太阳能学报, 2022, 43(1): 191-195.
SONG Z L, WANG F, CHEN X Y, et al.Pretreatment of herb residues with CHCL/PCA based deep eutectic solvent to enhance lignin removal[J]. Acta energiae solaris sinica, 2022, 43(1): 191-195.
[14] YU Q, ZHANG A P, WANG W, et al.Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’ herbal residues[J]. Bioresource technology, 2018, 247: 705-710.
[15] LYNAM J G, KUMAR N, WONG M J.Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource technology, 2017, 238: 684-689.
[16] DI MARINO D, STÖCKMANN D, KRIESCHER S, et al. Electrochemical depolymerisation of lignin in a deep eutectic solvent[J]. Green chemistry, 2016, 18(22): 6021-6028.
[17] SOSA F H B, BJELIĆ A, COUTINHO J A P, et al. Conversion of Organosolv and Kraft lignins into value-added compounds assisted by an acidic deep eutectic solvent[J]. Sustainable energy & fuels, 2022, 6(20): 4800-4815.
[18] RAHMAN M S, ROY R, MONTOYA C, et al.Acidic and basic amino acid-based novel deep eutectic solvents and their role in depolymerization of lignin[J]. Journal of molecular liquids, 2022, 362: 119751.
[19] YU Q, SONG Z L, CHEN X Y, et al.A methanol-choline chloride based deep eutectic solvent enhances the catalytic oxidation of lignin into acetovanillone and acetic acid[J]. Green chemistry, 2020, 22(19): 6415-6423.
[20] PRAKASH MARAN J, SIVAKUMAR V, THIRUGNANASAMBANDHAM K, et al.Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds[J]. Carbohydrate polymers, 2014, 101: 786-791.
[21] WEI Z F, QI X L, LI T T, et al.Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography[J]. Separation and purification technology, 2015, 149: 237-244.
[22] WANG M, LI L H, LU J M, et al.Acid promoted C-C bond oxidative cleavage of β—O—4 and β—1 lignin models to esters over a copper catalyst[J]. Green chemistry, 2017, 19(3): 702-706.
[23] WANG M, LU J M, LI L H, et al.Oxidative C(OH)—C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant[J]. Journal of catalysis, 2017, 348: 160-167.

基金

国家自然科学基金(51876206; 52276192); 广州市重点研发计划(202103000011)

PDF(1664 KB)

Accesses

Citation

Detail

段落导航
相关文章

/