海上单桩风力发电机组载荷-基础全工况一体化设计

杨思阳, 陈前, 王瑞良, 孙勇

太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 83-89.

PDF(1835 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1835 KB)
太阳能学报 ›› 2024, Vol. 45 ›› Issue (3) : 83-89. DOI: 10.19912/j.0254-0096.tynxb.2022-1820

海上单桩风力发电机组载荷-基础全工况一体化设计

  • 杨思阳, 陈前, 王瑞良, 孙勇
作者信息 +

INTEGRATED DESIGN OF LOAD-FOUNDATION CONSIDERING ALL EXTERNAL CONDITIONS FOR OFFSHORE MONOPILE WIND TURBINE

  • Yang Siyang, Chen Qian, Wang Ruiliang, Sun Yong
Author information +
文章历史 +

摘要

海上风电机组受到的外力载荷较为复杂,如何考虑所有外载的相互耦合对于获得更为准确的结构内力和变形等动力响应起到了关键性作用,同时也是响应海上风力发电机组降本需求的重要手段。通过浙江某海上风电项目的单桩基础分析对比分离式设计和一体化设计的区别,结果表明:分离式设计相比于一体化设计在风力机载荷和波浪载荷上缺乏时间的一致性;因波浪作用产生的部分惯性效应被重复考虑以及载荷相关系数的规定上也更为保守;一体化设计无论是在极限还是疲劳分析上都更优于分离式设计,能较大节约海上风力机基础的成本。

Abstract

The external force loads on offshore wind turbines are complex. Considering the coupling effects among all external loads is crucial for obtaining more accurate dynamic responses, such as internal forces and deformations, and is also an important means to reduce the cost of offshore wind power generation. By comparing and analyzing the differences between the separated design and integrated design based on the monopile foundation of a certain offshore wind power project in Zhejiang Province, it was found that the separated design lacks consistency in wind and wave loads over time, repeats the partial inertial effects caused by wave action, and has more conservative provisions on load correlation coefficients than the integrated design. The integrated design is superior to the separated design in both ultimate and fatigue analyses, and can greatly reduce the cost of offshore wind turbine foundations.

关键词

海上风电机组 / 基础 / 疲劳载荷 / 极限载荷 / 一体化设计

Key words

offshore wind turbines / foundations / fatigue load / ultimate load / integrated design

引用本文

导出引用
杨思阳, 陈前, 王瑞良, 孙勇. 海上单桩风力发电机组载荷-基础全工况一体化设计[J]. 太阳能学报. 2024, 45(3): 83-89 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1820
Yang Siyang, Chen Qian, Wang Ruiliang, Sun Yong. INTEGRATED DESIGN OF LOAD-FOUNDATION CONSIDERING ALL EXTERNAL CONDITIONS FOR OFFSHORE MONOPILE WIND TURBINE[J]. Acta Energiae Solaris Sinica. 2024, 45(3): 83-89 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1820
中图分类号: TK83   

参考文献

[1] 张永利, 周勇, 李杰. 东海大桥海上风电场基础设计与分析[J]. 四川建筑科学研究, 2010, 36(5): 188-191.
ZHANG Y L, ZHOU Y, LI J.Design and analysis of East China Sea Bridge offshore wind farm foundations[J]. Sichuan building science, 2010, 36(5): 188-191.
[2] 康海贵, 李玉刚, 郇彩云. 基于可靠度的海上风机基础结构优化设计方法研究[J]. 太阳能学报, 2009, 30(12): 1602-1607.
KANG H G, LI Y G, HUAN C Y.RBDO method research of offshore wind turbine foundation structure[J]. Acta energiae solaris sinica, 2009, 30(12): 1602-1607.
[3] 陈建兵, 孙涛, 黄凯, 等. 大型海上风力发电高塔系统一体化分析建模研究[J]. 动力学与控制学报, 2017, 15(3): 268-278.
CHEN J B, SUN T, HUANG K, et al.Study on integrated numerical modeling of offshore wind turbine tower systems[J]. Journal of dynamics and control, 2017, 15(3): 268-278.
[4] 付德义, 李婷, 王安庆, 等. 风浪耦合作用下海上风电机组载荷特性研究[J]. 太阳能学报, 2021, 42(9): 256-262.
FU D Y, LI T, WANG A Q, et al.Research on load characteristics of offshore wind turbine coupling with wind and wave[J]. Acta energiae solaris sinica, 2021, 42(9): 256-262.
[5] 田德, 陈静, 罗涛, 等. 基于柔性基础模型的海上风电机组支撑结构优化[J]. 太阳能学报, 2019, 40(4): 1185-1192.
TIAN D, CHEN J, LUO T, et al.Optimization of offshore wind turbine support structures based on flexible foundation models[J]. Acta energiae solaris sinica, 2019, 40(4): 1185-1192.
[6] 周昳鸣, 李晓勇, 陈晓庆. 海上风机支撑结构整体优化设计[J]. 南方能源建设, 2019, 6(4): 86-92.
ZHOU Y M, LI X Y, CHEN X Q.Integrated design optimization of offshore support structure[J]. Southern energy construction, 2019, 6(4): 86-92.
[7] 张博. 海上风机一体化载荷仿真方法研究[D]. 上海: 上海交通大学, 2016.
ZHANG B.Study on integrated loads simulation of offshore wind turbine[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[8] 王宇航, 唐浩渊, 邹亮, 等. 海上风电机组固定式支撑结构环境敏感性分析及极限工况下的一体化设计[J]. 特种结构, 2020, 37(5): 1-6.
WANG Y H, TANG H Y, ZOU L, et al.Environmental sensitivity analysis and integrated design on extreme situation of fixed support structures for offshore wind turbine[J]. Special structures, 2020, 37(5): 1-6.
[9] NB/T 10105—2018, 海上风电场工程风电机组基础设计规范:[S].
NB/T 10105—2018, Design code for wind turbine foundation of offshore wind farm engineering[S].
[10] IEC 61400-3-1. Design requirements for fixed offshore wind turbines[S].

基金

浙江省“尖兵”“领雁”研发攻关计划项目(2022C01178)

PDF(1835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/