基于YOLOv5 LiteX算法的光伏组件缺陷检测

王银, 高瑞泽, 李茂环, 孙前来, 李小松, 胡啸

太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 101-108.

PDF(1961 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1961 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (9) : 101-108. DOI: 10.19912/j.0254-0096.tynxb.2022-1823

基于YOLOv5 LiteX算法的光伏组件缺陷检测

  • 王银1, 高瑞泽1, 李茂环2, 孙前来1, 李小松1, 胡啸1
作者信息 +

PHOTOVOLTAIC MODULES DEFECT DETECTION BASED ON YOLOv5 LiteX ALGORITHM

  • Wang Yin1, Gao Ruize1, Li Maohuan2, Sun Qianlai1, Li Xiaosong1, Hu Xiao1
Author information +
文章历史 +

摘要

利用无人机载热红外设备对光伏组件进行航拍和缺陷检测。针对无人机存储和算力的局限性,以及现有基于深度学习的缺陷检测模型在大型光伏电站复杂环境下模型参数量大和计算开销大的问题,设计使用YOLOv5 LiteX作为超轻量化的缺陷检测模型。首先,选择加权双向特征金字塔BiFPN替换原来的特征金字塔PANet,使特征有效的跨尺度连接和加权融合;其次,在特征融合的基础上增加更大的检测尺度,以提高模型检测较小缺陷目标的性能;引入focal-EIoU Loss对原有的边界框坐标预测损失加以改善,使网络专注于困难样本的运算。此外,通过数据增强方法来克服数据量过少的问题。改进后网络的平均精确率(mAP)相较于基准网络(Lite-YOLOv5)提高了7.32个百分点,困难样本(异物遮挡)的mAP大幅度提升。

Abstract

Unmanned aerial vehicle-borne thermal infrared equipment is used to carry out aerial photography and defect detection of solar photovoltaic modules. Aiming at the limitation of UAV’s memory and computing power, as well as the problems of the existing defect detection model based on deep learning in the complex environment of large photovoltaic power plants, such as large model parameters and large computational overhead, YOLOv5 LiteX is designed as an ultra-lightweight defect detection model. Firstly, the weighted bidirectional feature pyramid BiFPN is selected to replace the original feature pyramid PANet, so that the features can be effectively connected and fused across scales. Secondly, a larger detection scale is added on the basis of feature fusion to improve the performance of the model in detecting smaller defect targets. Focal-EIoU Loss is introduced to improve the prediction loss of the original frame coordinates so that the network could focus on the computation of difficult samples. In addition, the data enhancement method is used to overcome the problem of too little data. The mean average precision (mAP) of the improved network is 7.32 percentage points higher than that of the baseline network (Lite-YOLOv5), and the mAP of difficult samples (foreign body occlusion) is greatly improved.

关键词

光伏组件 / 深度学习 / 目标检测 / 图像处理

Key words

photovoltaic modules / deep learning / object detection / image processing

引用本文

导出引用
王银, 高瑞泽, 李茂环, 孙前来, 李小松, 胡啸. 基于YOLOv5 LiteX算法的光伏组件缺陷检测[J]. 太阳能学报. 2023, 44(9): 101-108 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1823
Wang Yin, Gao Ruize, Li Maohuan, Sun Qianlai, Li Xiaosong, Hu Xiao. PHOTOVOLTAIC MODULES DEFECT DETECTION BASED ON YOLOv5 LiteX ALGORITHM[J]. Acta Energiae Solaris Sinica. 2023, 44(9): 101-108 https://doi.org/10.19912/j.0254-0096.tynxb.2022-1823
中图分类号: TP391   

参考文献

[1] DHIMISH M, HOLMES V, MEHRDADI B, et al.The impact of cracks on photovoltaic power performance[J]. Journal of science: advanced materials and devices, 2017, 2(2): 199-209.
[2] 刘怀广, 刘安逸, 周诗洋, 等. 基于深度神经网络的太阳能电池组件缺陷检测算法研究[J]. 应用光学, 2020, 41(2): 327-336.
LIU H G, LIU A Y, ZHOU S Y, et al.Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of applied optics, 2020, 41(2): 327-336.
[3] FU Z, ZHAO Y Z, LIU Y, et al.Solar cell crack inspection by image processing[C]//Proceedings of 2004 International Conference on the Business of Electronic Product Reliability and Liability, IEEE, Shanghai, China, 2004.
[4] ALSAFASFEH M, ABDEL-QADER I, BAZUIN B.Fault detection in photovoltaic system using SLIC and thermal images[C]//2017 8th International Conference on Information Technology(ICIT), Amman, Jordan, 2017.
[5] 杨亚楠. 太阳能光伏阵列识别及热斑检测技术的研究与实现[D]. 南京: 南京邮电大学, 2018.
YANG Y N.Design and implementation of solar photovoltaic array identification and hot spot detection technology[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018.
[6] ABDELHAMID M, SINGH R, OMAR M.Review of microcrack detection techniques for silicon solar cells[J]. IEEE journal of photovoltaics, 2014, 4(1): 514-524.
[7] 张朝. 可拓扑重构的光伏阵列故障诊断方法研究[D]. 南宁: 广西大学, 2016.
ZHANG C.Research on fault detection method for PV array with topology reconstruction[D]. Nanning: Guangxi University, 2016.
[8] GUO Y M, LIU Y, OERLEMANS A, et al.Deep learning for visual understanding: a review[J]. Neurocomputing, 2016, 187: 27-48.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Columbus, OH, USA, 2014: 580-587.
[10] GIRSHICK R.Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision(ICCV), Santiago, Chile, 2015: 1440-1448.
[11] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[12] 王道累, 李超, 李明山, 等. 基于深度卷积神经网络的光伏组件热斑检测[J]. 太阳能学报, 2022, 43(1): 412-417.
WANG D L, LI C, LI M S, et al.Solar photovoltaic modules hot spot detection based on deep convolutional neural networks[J]. Acta energiae solaris sinica, 2022, 43(1): 412-417.
[13] 李琼, 吴文宝, 刘斌, 等. 基于迁移学习的光伏组件鸟粪覆盖检测[J]. 太阳能学报, 2022, 43(2): 233-237.
LI Q, WU W B, LIU B, et al.Bird droppings coverage detection of photovoltaic module based on transfer learning[J]. Acta energiae solaris sinica, 2022, 43(2): 233-237.
[14] TANG W Q, YANG Q, XIONG K X, et al.Deep learning based automatic defect identification of photovoltaic module using electroluminescence images[J]. Solar energy, 2020, 201: 453-460.
[15] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detector[C]//European Conference on Computer Vision, Cham: Springer, 2016: 21-37.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, 2016: 779-788.
[17] REDMON J, FARHADI A.YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, 2017: 6517-6525.
[18] REDMON J, FARHADI A.Yolov3: an incremental improvement[D]. Washington: University of Washington, 2018.
[19] XU X W, ZHANG X L, ZHANG T W.Lite-YOLOv5: a lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 SAR images[J]. Remote sensing, 2022, 14(4): 1018.
[20] MA N N, ZHANG X Y, ZHENG H T, et al.ShuffleNetV2: practical guidelines for efficient CNN architecture design[C]//European Conference on Computer Vision, Cham, Switzer-land, 2018: 122-138.
[21] CHEN J, MAI H S, LUO L B, et al.Effective feature fusion network in BIFPN for small object detection[C]//2021 IEEE International Conference on Image Processing(ICIP), IEEE, Anchorage, AK, USA, 2021: 699-703.
[22] GUPTA B, SHUKLA P, MITTAL A.K-nearest correlated neighbor classification for Indian sign language gesture recognition using feature fusion[C]//2016 International Conference on Computer Communication and Informatics(ICCCI), Coimbatore, India, 2016: 1-5.
[23] ZHANG Y F, REN W Q, ZHANG Z, et al.Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157

基金

国家自然科学基金(61905172); 山西省科技成果转化引导专项资助(202204021301059); 山西省研究生教育创新(2020SY422); 山西省重点研发计划项目(202102020101005)

PDF(1961 KB)

Accesses

Citation

Detail

段落导航
相关文章

/